from transformers import AutoTokenizer, AutoModelForCausalLM import os MODEL_NAME = "Yuk050/gemma-3-1b-text-to-sql-model" LOCAL_DIR = "./model_cache" _tokenizer = None _model = None def load_model(): global _tokenizer, _model if _tokenizer is not None and _model is not None: return _tokenizer, _model print("🔄 Loading model...") if os.path.exists(LOCAL_DIR): _tokenizer = AutoTokenizer.from_pretrained(LOCAL_DIR) _model = AutoModelForCausalLM.from_pretrained(LOCAL_DIR, trust_remote_code=True) else: _tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) _model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True) os.makedirs(LOCAL_DIR, exist_ok=True) _tokenizer.save_pretrained(LOCAL_DIR) _model.save_pretrained(LOCAL_DIR) print("✅ Model loaded successfully!") return _tokenizer, _model