Spaces:
Running
Running
| import gradio as gr | |
| import torch | |
| import onnxruntime as ort | |
| from PIL import Image | |
| import requests | |
| import numpy as np | |
| from transformers import AutoTokenizer, AutoProcessor | |
| import os | |
| os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/decoder_model_merged_q4f16.onnx') | |
| os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/embed_tokens_q4f16.onnx') | |
| os.system('wget https://huggingface.co/llava-hf/llava-interleave-qwen-0.5b-hf/resolve/main/onnx/vision_encoder_q4f16.onnx') | |
| # Load the tokenizer and processor | |
| tokenizer = AutoTokenizer.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") | |
| processor = AutoProcessor.from_pretrained("llava-hf/llava-interleave-qwen-0.5b-hf") | |
| vision_encoder_session = ort.InferenceSession("vision_encoder_q4f16.onnx") | |
| decoder_session = ort.InferenceSession("decoder_model_merged_q4f16.onnx") | |
| embed_tokens_session = ort.InferenceSession("embed_tokens_q4f16.onnx") | |
| def merge_input_ids_with_image_features(image_features, inputs_embeds, input_ids, attention_mask,pad_token_id,special_image_token_id): | |
| num_images, num_image_patches, embed_dim = image_features.shape | |
| batch_size, sequence_length = input_ids.shape | |
| left_padding = not np.sum(input_ids[:, -1] == pad_token_id) | |
| # 1. Create a mask to know where special image tokens are | |
| special_image_token_mask = input_ids == special_image_token_id | |
| num_special_image_tokens = np.sum(special_image_token_mask, axis=-1) | |
| # Compute the maximum embed dimension | |
| max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length | |
| batch_indices, non_image_indices = np.where(input_ids != special_image_token_id) | |
| # 2. Compute the positions where text should be written | |
| # Calculate new positions for text tokens in merged image-text sequence. | |
| # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. | |
| # `np.cumsum` computes how each image token shifts subsequent text token positions. | |
| # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. | |
| new_token_positions = np.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 | |
| nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] | |
| if left_padding: | |
| new_token_positions += nb_image_pad[:, None] # offset for left padding | |
| text_to_overwrite = new_token_positions[batch_indices, non_image_indices] | |
| # 3. Create the full embedding, already padded to the maximum position | |
| final_embedding = np.zeros((batch_size, max_embed_dim, embed_dim), dtype=np.float32) | |
| final_attention_mask = np.zeros((batch_size, max_embed_dim), dtype=np.int64) | |
| # 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"] | |
| # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features | |
| final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] | |
| final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] | |
| # 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835) | |
| image_to_overwrite = np.full((batch_size, max_embed_dim), True) | |
| image_to_overwrite[batch_indices, text_to_overwrite] = False | |
| image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None] | |
| final_embedding[image_to_overwrite] = image_features.reshape(-1, embed_dim) | |
| final_attention_mask = np.logical_or(final_attention_mask, image_to_overwrite).astype(final_attention_mask.dtype) | |
| position_ids = final_attention_mask.cumsum(axis=-1) - 1 | |
| position_ids = np.where(final_attention_mask == 0, 1, position_ids) | |
| # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. | |
| batch_indices, pad_indices = np.where(input_ids == pad_token_id) | |
| indices_to_mask = new_token_positions[batch_indices, pad_indices] | |
| final_embedding[batch_indices, indices_to_mask] = 0 | |
| return final_embedding, final_attention_mask, position_ids | |
| # Load model and processor | |
| def describe_image(image): | |
| if(image.mode != 'RGB'): | |
| image = image.convert('RGB') | |
| conversation = [ | |
| { | |
| "role": "system", | |
| "content": "You are a helpful assistant who describes image." | |
| }, | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "text", "text": "Describe this image in about 200 words and explain each and every element in full detail"}, | |
| {"type": "image"}, | |
| ], | |
| }, | |
| ] | |
| # Apply chat template | |
| prompt = processor.apply_chat_template(conversation, add_generation_prompt=True) | |
| # Preprocess the image and text | |
| inputs = processor(images=image, text=prompt, return_tensors="np") | |
| vision_input_name = vision_encoder_session.get_inputs()[0].name | |
| vision_output_name = vision_encoder_session.get_outputs()[0].name | |
| vision_features = vision_encoder_session.run([vision_output_name], {vision_input_name: inputs["pixel_values"]})[0] | |
| # print('Total Time for Image Features Making ', time.time() - start) | |
| # Tokens for the prompt | |
| input_ids, attention_mask = inputs["input_ids"], inputs["attention_mask"] | |
| # Prepare inputs | |
| sequence_length = input_ids.shape[1] | |
| batch_size = 1 | |
| num_layers = 24 | |
| head_dim = 64 | |
| num_heads = 16 | |
| pad_token_id = tokenizer.pad_token_id | |
| past_sequence_length = 0 # Set to 0 for the initial pass | |
| special_image_token_id = 151646 | |
| # Position IDs | |
| position_ids = np.arange(sequence_length, dtype=np.int64).reshape(1, -1) | |
| # Past Key Values | |
| past_key_values = { | |
| f"past_key_values.{i}.key": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) | |
| for i in range(num_layers) | |
| } | |
| past_key_values.update({ | |
| f"past_key_values.{i}.value": np.zeros((batch_size, num_heads, past_sequence_length, head_dim), dtype=np.float32) | |
| for i in range(num_layers) | |
| }) | |
| # Run embed tokens | |
| embed_input_name = embed_tokens_session.get_inputs()[0].name | |
| embed_output_name = embed_tokens_session.get_outputs()[0].name | |
| token_embeddings = embed_tokens_session.run([embed_output_name], {embed_input_name: input_ids})[0] | |
| # Combine token embeddings and vision features | |
| combined_embeddings, attention_mask, position_ids = merge_input_ids_with_image_features(vision_features, token_embeddings, input_ids, attention_mask,pad_token_id,special_image_token_id) | |
| combined_len = combined_embeddings.shape[1] | |
| # Combine all inputs | |
| decoder_inputs = { | |
| "attention_mask": attention_mask, | |
| "position_ids": position_ids, | |
| "inputs_embeds": combined_embeddings, | |
| **past_key_values | |
| } | |
| # Print input shapes | |
| for name, value in decoder_inputs.items(): | |
| print(f"{name} shape: {value.shape} dtype {value.dtype}") | |
| # Run the decoder | |
| decoder_input_names = [input.name for input in decoder_session.get_inputs()] | |
| decoder_output_name = decoder_session.get_outputs()[0].name | |
| names = [n.name for n in decoder_session.get_outputs()] | |
| outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) | |
| # ... (previous code remains the same until after the decoder run) | |
| # print(f"Outputs shape: {outputs[0].shape}") | |
| # print(f"Outputs type: {outputs[0].dtype}") | |
| # Process outputs (decode tokens to text) | |
| generated_tokens = [] | |
| eos_token_id = tokenizer.eos_token_id | |
| max_new_tokens = 2048 | |
| for i in range(max_new_tokens): | |
| logits = outputs[0] | |
| past_kv = outputs[1:] | |
| logits_next_token = logits[:, -1] | |
| token_id = np.argmax(logits_next_token) | |
| if token_id == eos_token_id: | |
| break | |
| generated_tokens.append(token_id) | |
| # Prepare input for next token generation | |
| new_input_embeds = embed_tokens_session.run([embed_output_name], {embed_input_name: np.array([[token_id]])})[0] | |
| past_key_values = {name.replace("present", "past_key_values"): value for name, value in zip(names[1:], outputs[1:])} | |
| attention_mask = np.ones((1, combined_len + i + 1), dtype=np.int64) | |
| position_ids = np.arange(combined_len + i + 1, dtype=np.int64).reshape(1, -1)[:, -1:] | |
| decoder_inputs = { | |
| "attention_mask": attention_mask, | |
| "position_ids": position_ids, | |
| "inputs_embeds": new_input_embeds, | |
| **past_key_values | |
| } | |
| outputs = decoder_session.run(names, {name: decoder_inputs[name] for name in decoder_input_names if name in decoder_inputs}) | |
| # Convert to list of integers | |
| token_ids = [int(token) for token in generated_tokens] | |
| print(f"Generated token IDs: {token_ids}") | |
| # Decode tokens one by one | |
| decoded_tokens = [tokenizer.decode([token]) for token in token_ids] | |
| print(f"Decoded tokens: {decoded_tokens}") | |
| # Full decoded output | |
| decoded_output = tokenizer.decode(token_ids, skip_special_tokens=True) | |
| return decoded_output | |
| # Create Gradio interface | |
| interface = gr.Interface( | |
| fn=describe_image, | |
| inputs=gr.Image(type="pil"), | |
| outputs=gr.Textbox(lines=5, placeholder="Description will appear here"), | |
| title="Image Description Generator", | |
| description="Upload an image to get a detailed description." | |
| ) | |
| # Enable API | |
| interface.launch(share=True,show_error=True,debug=True) |