Spaces:
Runtime error
Runtime error
Description, model inference
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
-
from transformers import AutoTokenizer
|
| 5 |
import json
|
| 6 |
from datetime import datetime
|
| 7 |
from uuid import uuid4
|
|
@@ -13,7 +13,6 @@ from huggingface_hub import CommitScheduler
|
|
| 13 |
# TODO make it so that feedback is only saved on prev. example if user makes another obfuscation
|
| 14 |
# and changes slider but doesn't hit obfuscate
|
| 15 |
|
| 16 |
-
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
| 17 |
MODEL_PATHS = {
|
| 18 |
"length_more": "hallisky/lora-length-long-llama-3-8b",
|
| 19 |
"length_less": "hallisky/lora-length-long-llama-3-8b",
|
|
@@ -23,6 +22,24 @@ MODEL_PATHS = {
|
|
| 23 |
"grade_less": "hallisky/lora-grade-elementary-llama-3-8b",
|
| 24 |
}
|
| 25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
# Global variable to store the latest obfuscation result
|
| 27 |
latest_obfuscation = {}
|
| 28 |
user_id = str(uuid4()) # Generate a unique session-specific user ID
|
|
@@ -40,11 +57,6 @@ scheduler = CommitScheduler(
|
|
| 40 |
every=0.5
|
| 41 |
)
|
| 42 |
|
| 43 |
-
@spaces.GPU
|
| 44 |
-
def temp(text):
|
| 45 |
-
response = tokenizer(text, return_tensors="pt")
|
| 46 |
-
return response
|
| 47 |
-
|
| 48 |
def save_data(data):
|
| 49 |
with scheduler.lock:
|
| 50 |
with JSON_DATASET_PATH.open("a") as f:
|
|
@@ -55,13 +67,12 @@ def save_feedback(feedback_rating, feedback_text):
|
|
| 55 |
global latest_obfuscation
|
| 56 |
if latest_obfuscation:
|
| 57 |
feedback_data = latest_obfuscation.copy()
|
| 58 |
-
feedback_data[
|
| 59 |
-
|
| 60 |
-
"text": feedback_text
|
| 61 |
-
}
|
| 62 |
save_data(feedback_data)
|
| 63 |
return "No Feedback Selected", ""
|
| 64 |
|
|
|
|
| 65 |
def greet(input_text, length, function_words, grade_level, sarcasm, formality, voice, persuasive, descriptive, narrative, expository):
|
| 66 |
global latest_obfuscation, user_id
|
| 67 |
current_time = datetime.now().isoformat()
|
|
@@ -80,7 +91,15 @@ def greet(input_text, length, function_words, grade_level, sarcasm, formality, v
|
|
| 80 |
f"Narrative: {narrative}\n"
|
| 81 |
f"Expository: {expository}"
|
| 82 |
)
|
| 83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
# Save the new obfuscation result and reset feedback
|
| 85 |
latest_obfuscation = {
|
| 86 |
"datetime": current_time,
|
|
@@ -99,10 +118,8 @@ def greet(input_text, length, function_words, grade_level, sarcasm, formality, v
|
|
| 99 |
"expository": expository
|
| 100 |
},
|
| 101 |
"output": response,
|
| 102 |
-
"
|
| 103 |
-
|
| 104 |
-
"text": ""
|
| 105 |
-
}
|
| 106 |
}
|
| 107 |
|
| 108 |
# Save the obfuscation result
|
|
@@ -144,6 +161,7 @@ def check_initial_feedback_state(feedback_rating, feedback_text):
|
|
| 144 |
demo = gr.Blocks()
|
| 145 |
|
| 146 |
with demo:
|
|
|
|
| 147 |
with gr.Row():
|
| 148 |
with gr.Column(variant="panel"):
|
| 149 |
gr.Markdown("# 1) Input Text\n### Enter the text to be obfuscated.")
|
|
@@ -206,6 +224,9 @@ with demo:
|
|
| 206 |
# Initialize the button and warning message state on page load
|
| 207 |
demo.load(fn=update_obfuscate_button, inputs=input_text, outputs=[obfuscate_button, warning_message])
|
| 208 |
|
|
|
|
|
|
|
|
|
|
| 209 |
with gr.Column(variant="panel"):
|
| 210 |
gr.Markdown("# 3) Obfuscated Output")
|
| 211 |
|
|
|
|
| 1 |
import spaces
|
| 2 |
import gradio as gr
|
| 3 |
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 5 |
import json
|
| 6 |
from datetime import datetime
|
| 7 |
from uuid import uuid4
|
|
|
|
| 13 |
# TODO make it so that feedback is only saved on prev. example if user makes another obfuscation
|
| 14 |
# and changes slider but doesn't hit obfuscate
|
| 15 |
|
|
|
|
| 16 |
MODEL_PATHS = {
|
| 17 |
"length_more": "hallisky/lora-length-long-llama-3-8b",
|
| 18 |
"length_less": "hallisky/lora-length-long-llama-3-8b",
|
|
|
|
| 22 |
"grade_less": "hallisky/lora-grade-elementary-llama-3-8b",
|
| 23 |
}
|
| 24 |
|
| 25 |
+
DESCRIPTION = """\
|
| 26 |
+
# Authorship Obfuscation
|
| 27 |
+
This Space demonstrates model [Llama-2-7b-chat](https://huggingface.co/meta-llama/Llama-2-7b-chat) by Meta, a Llama 2 model with 7B parameters fine-tuned for chat instructions. Feel free to play with it, or duplicate to run generations without a queue! If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://huggingface.co/inference-endpoints).
|
| 28 |
+
🔎 For more details about the Llama 2 family of models and how to use them with `transformers`, take a look [at our blog post](https://huggingface.co/blog/llama2).
|
| 29 |
+
🔨 Looking for an even more powerful model? Check out the [13B version](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat) or the large [70B model demo](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI).
|
| 30 |
+
"""
|
| 31 |
+
|
| 32 |
+
# Load models
|
| 33 |
+
if not torch.cuda.is_available():
|
| 34 |
+
device = "cpu"
|
| 35 |
+
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
|
| 36 |
+
|
| 37 |
+
if torch.cuda.is_available():
|
| 38 |
+
device = "cuda"
|
| 39 |
+
model_id = "meta-llama/Meta-Llama-3-8B"
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(model_id).to(device) # device_map="auto" requires accelerate
|
| 41 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 42 |
+
|
| 43 |
# Global variable to store the latest obfuscation result
|
| 44 |
latest_obfuscation = {}
|
| 45 |
user_id = str(uuid4()) # Generate a unique session-specific user ID
|
|
|
|
| 57 |
every=0.5
|
| 58 |
)
|
| 59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
def save_data(data):
|
| 61 |
with scheduler.lock:
|
| 62 |
with JSON_DATASET_PATH.open("a") as f:
|
|
|
|
| 67 |
global latest_obfuscation
|
| 68 |
if latest_obfuscation:
|
| 69 |
feedback_data = latest_obfuscation.copy()
|
| 70 |
+
feedback_data["feedback_rating"] = feedback_rating
|
| 71 |
+
feedback_data["feedback_text"] = feedback_text
|
|
|
|
|
|
|
| 72 |
save_data(feedback_data)
|
| 73 |
return "No Feedback Selected", ""
|
| 74 |
|
| 75 |
+
@spaces.GPU
|
| 76 |
def greet(input_text, length, function_words, grade_level, sarcasm, formality, voice, persuasive, descriptive, narrative, expository):
|
| 77 |
global latest_obfuscation, user_id
|
| 78 |
current_time = datetime.now().isoformat()
|
|
|
|
| 91 |
f"Narrative: {narrative}\n"
|
| 92 |
f"Expository: {expository}"
|
| 93 |
)
|
| 94 |
+
|
| 95 |
+
with torch.no_grad():
|
| 96 |
+
outputs = model.generate(
|
| 97 |
+
input_ids=tokenizer(input_text, return_tensors="pt").input_ids.to(device),
|
| 98 |
+
max_length=100,
|
| 99 |
+
num_return_sequences=1,
|
| 100 |
+
)
|
| 101 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 102 |
+
|
| 103 |
# Save the new obfuscation result and reset feedback
|
| 104 |
latest_obfuscation = {
|
| 105 |
"datetime": current_time,
|
|
|
|
| 118 |
"expository": expository
|
| 119 |
},
|
| 120 |
"output": response,
|
| 121 |
+
"feedback_rating": "No Feedback Selected",
|
| 122 |
+
"feedback_text": ""
|
|
|
|
|
|
|
| 123 |
}
|
| 124 |
|
| 125 |
# Save the obfuscation result
|
|
|
|
| 161 |
demo = gr.Blocks()
|
| 162 |
|
| 163 |
with demo:
|
| 164 |
+
gr.Markdown(DESCRIPTION)
|
| 165 |
with gr.Row():
|
| 166 |
with gr.Column(variant="panel"):
|
| 167 |
gr.Markdown("# 1) Input Text\n### Enter the text to be obfuscated.")
|
|
|
|
| 224 |
# Initialize the button and warning message state on page load
|
| 225 |
demo.load(fn=update_obfuscate_button, inputs=input_text, outputs=[obfuscate_button, warning_message])
|
| 226 |
|
| 227 |
+
# with gr.Column(variant="panel"):
|
| 228 |
+
# gr.Markdown("# 3) Obfuscated Output")
|
| 229 |
+
|
| 230 |
with gr.Column(variant="panel"):
|
| 231 |
gr.Markdown("# 3) Obfuscated Output")
|
| 232 |
|