Update app.py
Browse files
app.py
CHANGED
|
@@ -44,8 +44,9 @@ def initialize_llm():
|
|
| 44 |
logger.info("π Initializing FREE local language model...")
|
| 45 |
|
| 46 |
BACKUP_MODELS = [
|
| 47 |
-
"
|
| 48 |
-
"
|
|
|
|
| 49 |
]
|
| 50 |
|
| 51 |
for model_name in BACKUP_MODELS:
|
|
@@ -53,19 +54,37 @@ def initialize_llm():
|
|
| 53 |
logger.info(f" Trying {model_name}...")
|
| 54 |
device = 0 if torch.cuda.is_available() else -1
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
llm_client = pipeline(
|
| 60 |
task,
|
| 61 |
model=model_name,
|
| 62 |
device=device,
|
| 63 |
-
max_length=
|
| 64 |
truncation=True,
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
CONFIG["llm_model"] = model_name
|
| 68 |
-
CONFIG["model_type"] =
|
| 69 |
logger.info(f"β
FREE LLM initialized: {model_name}")
|
| 70 |
logger.info(f" Device: {'GPU' if device == 0 else 'CPU'}")
|
| 71 |
return llm_client
|
|
@@ -356,33 +375,68 @@ def generate_llm_answer(
|
|
| 356 |
repetition_penalty = 1.25
|
| 357 |
|
| 358 |
# Create prompt based on model type
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 362 |
else:
|
| 363 |
-
#
|
| 364 |
user_prompt = f"""[INST] Question: {query}
|
| 365 |
|
| 366 |
Fashion Knowledge:
|
| 367 |
{context_text}
|
| 368 |
|
| 369 |
-
Answer the question using the knowledge above. Be specific and helpful (
|
| 370 |
|
| 371 |
try:
|
| 372 |
logger.info(f" β Calling {CONFIG['llm_model']} (temp={temperature}, tokens={max_tokens})...")
|
| 373 |
|
| 374 |
# Call pipeline with model-specific parameters
|
| 375 |
-
if
|
| 376 |
-
# T5 uses max_length
|
| 377 |
output = llm_client(
|
| 378 |
user_prompt,
|
| 379 |
-
max_length=
|
| 380 |
-
temperature=
|
| 381 |
-
top_p=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 382 |
do_sample=True,
|
|
|
|
|
|
|
| 383 |
)
|
| 384 |
else:
|
| 385 |
-
# Other models
|
| 386 |
output = llm_client(
|
| 387 |
user_prompt,
|
| 388 |
max_new_tokens=max_tokens,
|
|
@@ -391,7 +445,7 @@ Answer the question using the knowledge above. Be specific and helpful (100-250
|
|
| 391 |
repetition_penalty=repetition_penalty,
|
| 392 |
do_sample=True,
|
| 393 |
return_full_text=False,
|
| 394 |
-
pad_token_id=llm_client.tokenizer.eos_token_id
|
| 395 |
)
|
| 396 |
|
| 397 |
# Extract generated text
|
|
@@ -488,26 +542,62 @@ def generate_answer_langchain(
|
|
| 488 |
# GRADIO INTERFACE
|
| 489 |
# ============================================================================
|
| 490 |
|
| 491 |
-
def fashion_chatbot(message: str, history: List[List[str]])
|
| 492 |
"""
|
| 493 |
-
Chatbot function for Gradio interface
|
| 494 |
"""
|
| 495 |
try:
|
| 496 |
if not message or not message.strip():
|
| 497 |
-
|
|
|
|
| 498 |
|
| 499 |
-
#
|
| 500 |
-
|
|
|
|
|
|
|
|
|
|
| 501 |
message.strip(),
|
| 502 |
vectorstore,
|
| 503 |
-
|
| 504 |
)
|
| 505 |
|
| 506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 507 |
|
| 508 |
except Exception as e:
|
| 509 |
logger.error(f"Error in chatbot: {e}")
|
| 510 |
-
|
| 511 |
|
| 512 |
# ============================================================================
|
| 513 |
# INITIALIZE AND LAUNCH
|
|
|
|
| 44 |
logger.info("π Initializing FREE local language model...")
|
| 45 |
|
| 46 |
BACKUP_MODELS = [
|
| 47 |
+
"microsoft/phi-2", # Primary - 2.7B, excellent quality, fast
|
| 48 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", # Backup - 1.1B, very fast
|
| 49 |
+
"google/flan-t5-large", # Fallback - 780M
|
| 50 |
]
|
| 51 |
|
| 52 |
for model_name in BACKUP_MODELS:
|
|
|
|
| 54 |
logger.info(f" Trying {model_name}...")
|
| 55 |
device = 0 if torch.cuda.is_available() else -1
|
| 56 |
|
| 57 |
+
# Determine task and model type
|
| 58 |
+
if "t5" in model_name.lower():
|
| 59 |
+
task = "text2text-generation"
|
| 60 |
+
model_type = "t5"
|
| 61 |
+
elif "phi" in model_name.lower():
|
| 62 |
+
task = "text-generation"
|
| 63 |
+
model_type = "phi"
|
| 64 |
+
elif "tinyllama" in model_name.lower():
|
| 65 |
+
task = "text-generation"
|
| 66 |
+
model_type = "tinyllama"
|
| 67 |
+
else:
|
| 68 |
+
task = "text-generation"
|
| 69 |
+
model_type = "instruct"
|
| 70 |
+
|
| 71 |
+
# Model-specific kwargs for optimization
|
| 72 |
+
model_kwargs = {
|
| 73 |
+
"low_cpu_mem_usage": True,
|
| 74 |
+
"trust_remote_code": True # Required for Phi-2
|
| 75 |
+
}
|
| 76 |
|
| 77 |
llm_client = pipeline(
|
| 78 |
task,
|
| 79 |
model=model_name,
|
| 80 |
device=device,
|
| 81 |
+
max_length=400, # Good length for detailed answers
|
| 82 |
truncation=True,
|
| 83 |
+
model_kwargs=model_kwargs
|
| 84 |
)
|
| 85 |
|
| 86 |
CONFIG["llm_model"] = model_name
|
| 87 |
+
CONFIG["model_type"] = model_type
|
| 88 |
logger.info(f"β
FREE LLM initialized: {model_name}")
|
| 89 |
logger.info(f" Device: {'GPU' if device == 0 else 'CPU'}")
|
| 90 |
return llm_client
|
|
|
|
| 375 |
repetition_penalty = 1.25
|
| 376 |
|
| 377 |
# Create prompt based on model type
|
| 378 |
+
model_type = CONFIG.get("model_type", "instruct")
|
| 379 |
+
|
| 380 |
+
if model_type == "t5":
|
| 381 |
+
# T5 needs simple format
|
| 382 |
+
user_prompt = f"Question: {query}\n\nContext: {context_text[:800]}\n\nProvide helpful fashion advice:"
|
| 383 |
+
elif model_type == "phi":
|
| 384 |
+
# Phi-2 format (no special tokens needed)
|
| 385 |
+
user_prompt = f"""Instruct: You are a fashion advisor. Use the following knowledge to answer the question.
|
| 386 |
+
|
| 387 |
+
Fashion Knowledge:
|
| 388 |
+
{context_text}
|
| 389 |
+
|
| 390 |
+
Question: {query}
|
| 391 |
+
|
| 392 |
+
Output: Provide specific, helpful fashion advice in 150-200 words."""
|
| 393 |
+
elif model_type == "tinyllama":
|
| 394 |
+
# TinyLlama chat format
|
| 395 |
+
user_prompt = f"""<|system|>
|
| 396 |
+
You are a helpful fashion advisor.</s>
|
| 397 |
+
<|user|>
|
| 398 |
+
Use this fashion knowledge to answer: {context_text[:1000]}
|
| 399 |
+
|
| 400 |
+
Question: {query}</s>
|
| 401 |
+
<|assistant|>"""
|
| 402 |
else:
|
| 403 |
+
# Generic instruct format
|
| 404 |
user_prompt = f"""[INST] Question: {query}
|
| 405 |
|
| 406 |
Fashion Knowledge:
|
| 407 |
{context_text}
|
| 408 |
|
| 409 |
+
Answer the question using the knowledge above. Be specific and helpful (150-200 words). [/INST]"""
|
| 410 |
|
| 411 |
try:
|
| 412 |
logger.info(f" β Calling {CONFIG['llm_model']} (temp={temperature}, tokens={max_tokens})...")
|
| 413 |
|
| 414 |
# Call pipeline with model-specific parameters
|
| 415 |
+
if model_type == "t5":
|
| 416 |
+
# T5 uses max_length
|
| 417 |
output = llm_client(
|
| 418 |
user_prompt,
|
| 419 |
+
max_length=150,
|
| 420 |
+
temperature=0.7,
|
| 421 |
+
top_p=0.9,
|
| 422 |
+
do_sample=True,
|
| 423 |
+
num_beams=1,
|
| 424 |
+
early_stopping=True
|
| 425 |
+
)
|
| 426 |
+
elif model_type in ["phi", "tinyllama"]:
|
| 427 |
+
# Phi-2 and TinyLlama - optimized for quality and speed
|
| 428 |
+
output = llm_client(
|
| 429 |
+
user_prompt,
|
| 430 |
+
max_new_tokens=min(max_tokens, 300), # Cap at 300 for speed
|
| 431 |
+
temperature=0.75, # Balanced creativity
|
| 432 |
+
top_p=0.92,
|
| 433 |
+
repetition_penalty=1.15,
|
| 434 |
do_sample=True,
|
| 435 |
+
return_full_text=False,
|
| 436 |
+
pad_token_id=llm_client.tokenizer.eos_token_id if hasattr(llm_client.tokenizer, 'eos_token_id') else None
|
| 437 |
)
|
| 438 |
else:
|
| 439 |
+
# Other models
|
| 440 |
output = llm_client(
|
| 441 |
user_prompt,
|
| 442 |
max_new_tokens=max_tokens,
|
|
|
|
| 445 |
repetition_penalty=repetition_penalty,
|
| 446 |
do_sample=True,
|
| 447 |
return_full_text=False,
|
| 448 |
+
pad_token_id=llm_client.tokenizer.eos_token_id if hasattr(llm_client.tokenizer, 'eos_token_id') else None
|
| 449 |
)
|
| 450 |
|
| 451 |
# Extract generated text
|
|
|
|
| 542 |
# GRADIO INTERFACE
|
| 543 |
# ============================================================================
|
| 544 |
|
| 545 |
+
def fashion_chatbot(message: str, history: List[List[str]]):
|
| 546 |
"""
|
| 547 |
+
Chatbot function for Gradio interface with streaming
|
| 548 |
"""
|
| 549 |
try:
|
| 550 |
if not message or not message.strip():
|
| 551 |
+
yield "Please ask a fashion-related question!"
|
| 552 |
+
return
|
| 553 |
|
| 554 |
+
# Show searching indicator
|
| 555 |
+
yield "π Searching fashion knowledge..."
|
| 556 |
+
|
| 557 |
+
# Retrieve documents
|
| 558 |
+
retrieved_docs, confidence = retrieve_knowledge_langchain(
|
| 559 |
message.strip(),
|
| 560 |
vectorstore,
|
| 561 |
+
top_k=CONFIG["top_k"]
|
| 562 |
)
|
| 563 |
|
| 564 |
+
if not retrieved_docs:
|
| 565 |
+
yield "I couldn't find relevant information to answer your question."
|
| 566 |
+
return
|
| 567 |
+
|
| 568 |
+
# Show generating indicator
|
| 569 |
+
yield f"π Generating answer ({len(retrieved_docs)} sources found)..."
|
| 570 |
+
|
| 571 |
+
# Generate answer with multiple attempts
|
| 572 |
+
llm_answer = None
|
| 573 |
+
for attempt in range(1, 5):
|
| 574 |
+
logger.info(f"\n π€ LLM Generation Attempt {attempt}/4")
|
| 575 |
+
llm_answer = generate_llm_answer(message.strip(), retrieved_docs, llm_client, attempt)
|
| 576 |
+
|
| 577 |
+
if llm_answer:
|
| 578 |
+
break
|
| 579 |
+
|
| 580 |
+
# Fallback if needed
|
| 581 |
+
if not llm_answer:
|
| 582 |
+
logger.error(f" β All LLM attempts failed - using fallback")
|
| 583 |
+
llm_answer = synthesize_direct_answer(message.strip(), retrieved_docs)
|
| 584 |
+
|
| 585 |
+
# Stream the answer word by word for natural flow
|
| 586 |
+
import time
|
| 587 |
+
words = llm_answer.split()
|
| 588 |
+
displayed_text = ""
|
| 589 |
+
|
| 590 |
+
for i, word in enumerate(words):
|
| 591 |
+
displayed_text += word + " "
|
| 592 |
+
|
| 593 |
+
# Yield every 3 words for smooth streaming
|
| 594 |
+
if i % 3 == 0 or i == len(words) - 1:
|
| 595 |
+
yield displayed_text.strip()
|
| 596 |
+
time.sleep(0.05) # Small delay for natural flow
|
| 597 |
|
| 598 |
except Exception as e:
|
| 599 |
logger.error(f"Error in chatbot: {e}")
|
| 600 |
+
yield f"Sorry, I encountered an error: {str(e)}"
|
| 601 |
|
| 602 |
# ============================================================================
|
| 603 |
# INITIALIZE AND LAUNCH
|