pip
Browse files
aucpr.py
CHANGED
|
@@ -15,7 +15,7 @@
|
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
-
from sklearn.metrics import precision_recall_curve, auc
|
| 19 |
|
| 20 |
|
| 21 |
# TODO: Add BibTeX citation
|
|
@@ -93,9 +93,11 @@ class AUCPR(evaluate.Metric):
|
|
| 93 |
|
| 94 |
def _compute(self, references, prediction_scores):
|
| 95 |
"""Returns the scores"""
|
| 96 |
-
#
|
|
|
|
| 97 |
precision, recall, _ = precision_recall_curve(references, prediction_scores)
|
| 98 |
aucpr = auc(recall, precision)
|
|
|
|
| 99 |
return {
|
| 100 |
"aucpr": aucpr,
|
| 101 |
}
|
|
|
|
| 15 |
|
| 16 |
import evaluate
|
| 17 |
import datasets
|
| 18 |
+
from sklearn.metrics import precision_recall_curve, auc, average_precision_score
|
| 19 |
|
| 20 |
|
| 21 |
# TODO: Add BibTeX citation
|
|
|
|
| 93 |
|
| 94 |
def _compute(self, references, prediction_scores):
|
| 95 |
"""Returns the scores"""
|
| 96 |
+
# following: https://github.com/jertubiana/ScanNet/blob/7685549c8ed2159a0f441a977dec767343256292/baselines/train_handcrafted_features_PPBS.py#L47
|
| 97 |
+
# instead of using average_precision_score
|
| 98 |
precision, recall, _ = precision_recall_curve(references, prediction_scores)
|
| 99 |
aucpr = auc(recall, precision)
|
| 100 |
+
# aucpr = average_precision_score(references, prediction_scores)
|
| 101 |
return {
|
| 102 |
"aucpr": aucpr,
|
| 103 |
}
|