Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
import numpy as np
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from torch import nn
|
| 6 |
+
from transformers import SegformerForSemanticSegmentation, SegformerImageProcessor
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# --- 1. CONFIGURACIÓN ---
|
| 10 |
+
MODEL_PATH = "modelo_mejorado.pth"
|
| 11 |
+
|
| 12 |
+
LABELS = [
|
| 13 |
+
"fondo", "wheat leaf rust", "wheat powdery mildew",
|
| 14 |
+
"wheat septoria blotch", "wheat stem rust", "wheat stripe rust"
|
| 15 |
+
]
|
| 16 |
+
|
| 17 |
+
# Paleta (R, G, B)
|
| 18 |
+
PALETA_COLORES = [
|
| 19 |
+
[0, 0, 0], [220, 38, 38], [22, 163, 74],
|
| 20 |
+
[37, 99, 235], [234, 179, 8], [219, 39, 119]
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
# En Docker CPU (Free Tier) forzamos CPU para evitar errores de memoria
|
| 24 |
+
device = torch.device("cpu")
|
| 25 |
+
print(f"Usando dispositivo: {device}")
|
| 26 |
+
|
| 27 |
+
# --- 2. CARGAR MODELO ---
|
| 28 |
+
checkpoint_name = "nvidia/segformer-b4-finetuned-ade-512-512"
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
model_inference = SegformerForSemanticSegmentation.from_pretrained(
|
| 32 |
+
checkpoint_name,
|
| 33 |
+
num_labels=len(LABELS),
|
| 34 |
+
id2label={i: label for i, label in enumerate(LABELS)},
|
| 35 |
+
label2id={label: i for i, label in enumerate(LABELS)},
|
| 36 |
+
ignore_mismatched_sizes=True
|
| 37 |
+
)
|
| 38 |
+
# Cargar pesos
|
| 39 |
+
if os.path.exists(MODEL_PATH):
|
| 40 |
+
state_dict = torch.load(MODEL_PATH, map_location=device)
|
| 41 |
+
model_inference.load_state_dict(state_dict)
|
| 42 |
+
print("✅ Modelo cargado correctamente.")
|
| 43 |
+
else:
|
| 44 |
+
print("⚠️ NO se encontró el archivo .pth")
|
| 45 |
+
|
| 46 |
+
model_inference.to(device)
|
| 47 |
+
model_inference.eval()
|
| 48 |
+
|
| 49 |
+
image_processor = SegformerImageProcessor.from_pretrained(checkpoint_name)
|
| 50 |
+
image_processor.do_resize = False
|
| 51 |
+
image_processor.do_rescale = True
|
| 52 |
+
|
| 53 |
+
except Exception as e:
|
| 54 |
+
print(f"Error fatal cargando modelo: {e}")
|
| 55 |
+
|
| 56 |
+
# --- 3. PREDICCIÓN ---
|
| 57 |
+
def predecir_enfermedad(image):
|
| 58 |
+
if image is None: return None, "⚠️ Sube una imagen."
|
| 59 |
+
|
| 60 |
+
original_size = image.size
|
| 61 |
+
img_resized = image.resize((512, 512))
|
| 62 |
+
|
| 63 |
+
inputs = image_processor(images=img_resized, return_tensors="pt")
|
| 64 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 65 |
+
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
outputs = model_inference(**inputs)
|
| 68 |
+
logits = outputs.logits
|
| 69 |
+
logits_upsampled = nn.functional.interpolate(logits, size=(512, 512), mode="bilinear", align_corners=False)
|
| 70 |
+
pred_mask = logits_upsampled.argmax(dim=1).squeeze().cpu().numpy()
|
| 71 |
+
|
| 72 |
+
color_mask = np.zeros((512, 512, 3), dtype=np.uint8)
|
| 73 |
+
classes_found = []
|
| 74 |
+
unique_classes = np.unique(pred_mask)
|
| 75 |
+
|
| 76 |
+
for class_id in unique_classes:
|
| 77 |
+
if class_id == 0: continue
|
| 78 |
+
classes_found.append(LABELS[class_id])
|
| 79 |
+
color_mask[pred_mask == class_id] = PALETA_COLORES[class_id]
|
| 80 |
+
|
| 81 |
+
mask_pil = Image.fromarray(color_mask).resize(original_size, resample=Image.NEAREST)
|
| 82 |
+
final_image = Image.blend(image.convert("RGB"), mask_pil.convert("RGB"), alpha=0.45)
|
| 83 |
+
|
| 84 |
+
if len(classes_found) > 0:
|
| 85 |
+
diagnosis = "Enfermedades:\n" + "\n".join(f"- {c}" for c in classes_found)
|
| 86 |
+
else:
|
| 87 |
+
diagnosis = "Planta Sana (Solo fondo)."
|
| 88 |
+
|
| 89 |
+
return final_image, diagnosis
|
| 90 |
+
|
| 91 |
+
# --- 4. INTERFAZ ---
|
| 92 |
+
# Usamos Blocks simples compatibles con versiones estables
|
| 93 |
+
with gr.Blocks(title="Wheat AI") as demo:
|
| 94 |
+
gr.Markdown("# 🌾 Detector de Enfermedades en Trigo")
|
| 95 |
+
|
| 96 |
+
with gr.Row():
|
| 97 |
+
img_in = gr.Image(type="pil", label="Imagen")
|
| 98 |
+
img_out = gr.Image(type="pil", label="Resultado")
|
| 99 |
+
|
| 100 |
+
txt_out = gr.Textbox(label="Diagnóstico")
|
| 101 |
+
btn = gr.Button("Analizar", variant="primary")
|
| 102 |
+
|
| 103 |
+
btn.click(predecir_enfermedad, img_in, [img_out, txt_out])
|
| 104 |
+
|
| 105 |
+
# Configuración crítica para Docker en Hugging Face
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|