File size: 1,378 Bytes
9022542
3e11311
 
9022542
d8f6ef9
9022542
3e11311
9022542
3e11311
7742179
3e11311
 
 
 
 
 
 
 
 
9022542
3e11311
c3173d9
 
 
3e11311
c3173d9
3e11311
c3173d9
 
 
 
 
 
 
 
 
 
3e11311
 
c3173d9
3e11311
c3173d9
3e11311
c3173d9
3e11311
c3173d9
3e11311
 
 
 
 
 
 
5850346
3e11311
 
c3173d9
3e11311
5850346
119afbd
5850346
b014f93
 
 
 
3e11311
5850346
3e11311
5850346
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
title: Transformer Model Structure Visualizer
emoji: 🧩
colorFrom: indigo
colorTo: green
sdk: docker
app_file: backend/app.py
pinned: false
license: mit
short_description: Visualize transformer architectures.
tags:
  - transformers
  - visualization
  - attention
  - model-architecture
  - huggingface
  - model-layers
  - model-structure
  - hidden-states

---


# Run the app locally
This app is developed using React + Fastapi. You can run this app locally with the following steps.

### Run Frontend

1. Install dependencies:
    ```
    npm i
    ```

2. Run the app:
    ```commandline
    npm run dev
    ```
3. Open the browser and access the service from http://localhost:5173/


### Run Backend

1. **Activate the virtual environment**

   Make sure you have your Python virtual environment set up and activated.

2. **Navigate to the backend directory**

   ```commandline
   cd backend
   ```

3. **Install dependencies**
   ```commandline
   pip install -r requirements.txt
   ```

4. **(Optional) Install GPU-related packages** 

   If you are running on a GPU-enabled device, you can install additional packages (support for more models):
   
   ```commandline
   python install_gpu_packages.py
   ```

5. **Start the backend server**
   
   Run the FastAPI app with Uvicorn:
   ```commandline
   uvicorn app:app --reload --host 0.0.0.0 --port 8000
   ```