Spaces:
Sleeping
Sleeping
| import flwr as fl | |
| import torch | |
| from collections import OrderedDict # For the example provided. | |
| def run_federated_learning(): | |
| """ | |
| Sets up and starts a federated learning simulation. | |
| This is a highly conceptual example. Actual implementation requires: | |
| 1. A defined model architecture. | |
| 2. A training loop using PyTorch or TensorFlow. | |
| 3. Data loaders. | |
| 4. Proper handling of FL strategies. | |
| """ | |
| return """ | |
| Federated Learning Implementation Status | |
| <br><br> | |
| This is a conceptual federated learning implementation. Actual data and the requirements are not implemented. | |
| <br><br> | |
| To implement Federated Learning in reality with all the requirements you need: | |
| <br>1. A defined model architecture: Check the FL Client and model defined with model parameters and model code. | |
| <br>2. A training loop using PyTorch or TensorFlow: Training and validation needs to be provided, also look the parameter setup and the model | |
| <br>3. Data loaders: Data needs to be correctly loaded into the program. | |
| <br>4. Proper handling of FL strategies: FL learning algorithms needs to be correctly provided. | |
| """ | |
| class FlowerClient(fl.client.NumPyClient): | |
| def __init__(self, model, trainloader, valloader): | |
| self.model = model | |
| self.trainloader = trainloader | |
| self.valloader = valloader | |
| def get_parameters(self, config): | |
| return [val.cpu().numpy() for _, val in self.model.state_dict().items()] | |
| def set_parameters(self, parameters): | |
| params_dict = zip(self.model.state_dict().keys(), parameters) | |
| state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) | |
| self.model.load_state_dict(state_dict, strict=True) | |
| def fit(self, parameters, config): | |
| self.set_parameters(parameters) | |
| # Train. | |
| print("Train the parameters here.") | |
| return parameters, 1, {} | |
| def evaluate(self, parameters, config): | |
| self.set_parameters(parameters) | |
| # Test (validate). | |
| return 1,1, {"accuracy": 1} | |
| #Flower code | |
| #The parameters needs to be added. | |
| print("Started Simulation FL code") |