Spaces:
Sleeping
Sleeping
File size: 17,777 Bytes
f986893 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
"""
The training function used in the finetuning task.
"""
import csv
import logging
import os
import pickle
import time
from argparse import Namespace
from logging import Logger
from typing import List
import numpy as np
import pandas as pd
import torch
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader
from grover.data import MolCollator
from grover.data import StandardScaler
from grover.util.metrics import get_metric_func
from grover.util.nn_utils import initialize_weights, param_count
from grover.util.scheduler import NoamLR
from grover.util.utils import build_optimizer, build_lr_scheduler, makedirs, load_checkpoint, get_loss_func, \
save_checkpoint, build_model
from grover.util.utils import get_class_sizes, get_data, split_data, get_task_names
from task.predict import predict, evaluate, evaluate_predictions
def train(epoch, model, data, loss_func, optimizer, scheduler,
shared_dict, args: Namespace, n_iter: int = 0,
logger: logging.Logger = None):
"""
Trains a model for an epoch.
:param model: Model.
:param data: A MoleculeDataset (or a list of MoleculeDatasets if using moe).
:param loss_func: Loss function.
:param optimizer: An Optimizer.
:param scheduler: A learning rate scheduler.
:param args: Arguments.
:param n_iter: The number of iterations (training examples) trained on so far.
:param logger: A logger for printing intermediate results.
:param writer: A tensorboardX SummaryWriter.
:return: The total number of iterations (training examples) trained on so far.
"""
# debug = logger.debug if logger is not None else print
model.train()
# data.shuffle()
loss_sum, iter_count = 0, 0
cum_loss_sum, cum_iter_count = 0, 0
mol_collator = MolCollator(shared_dict=shared_dict, args=args)
num_workers = 4
if type(data) == DataLoader:
mol_loader = data
else:
mol_loader = DataLoader(data, batch_size=args.batch_size, shuffle=True,
num_workers=num_workers, collate_fn=mol_collator)
for _, item in enumerate(mol_loader):
_, batch, features_batch, mask, targets = item
if next(model.parameters()).is_cuda:
mask, targets = mask.cuda(), targets.cuda()
class_weights = torch.ones(targets.shape)
if args.cuda:
class_weights = class_weights.cuda()
# Run model
model.zero_grad()
preds = model(batch, features_batch)
loss = loss_func(preds, targets) * class_weights * mask
loss = loss.sum() / mask.sum()
loss_sum += loss.item()
iter_count += args.batch_size
cum_loss_sum += loss.item()
cum_iter_count += 1
loss.backward()
optimizer.step()
if isinstance(scheduler, NoamLR):
scheduler.step()
n_iter += args.batch_size
#if (n_iter // args.batch_size) % args.log_frequency == 0:
# lrs = scheduler.get_lr()
# loss_avg = loss_sum / iter_count
# loss_sum, iter_count = 0, 0
# lrs_str = ', '.join(f'lr_{i} = {lr:.4e}' for i, lr in enumerate(lrs))
return n_iter, cum_loss_sum / cum_iter_count
def run_training(args: Namespace, time_start, logger: Logger = None) -> List[float]:
"""
Trains a model and returns test scores on the model checkpoint with the highest validation score.
:param args: Arguments.
:param logger: Logger.
:return: A list of ensemble scores for each task.
"""
if logger is not None:
debug, info = logger.debug, logger.info
else:
debug = info = print
# pin GPU to local rank.
idx = args.gpu
if args.gpu is not None:
torch.cuda.set_device(idx)
features_scaler, scaler, shared_dict, test_data, train_data, val_data = load_data(args, debug, logger)
metric_func = get_metric_func(metric=args.metric)
# Set up test set evaluation
test_smiles, test_targets = test_data.smiles(), test_data.targets()
sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))
# Train ensemble of models
for model_idx in range(args.ensemble_size):
# Tensorboard writer
save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
makedirs(save_dir)
# Load/build model
if args.checkpoint_paths is not None:
if len(args.checkpoint_paths) == 1:
cur_model = 0
else:
cur_model = model_idx
debug(f'Loading model {cur_model} from {args.checkpoint_paths[cur_model]}')
model = load_checkpoint(args.checkpoint_paths[cur_model], current_args=args, logger=logger)
else:
debug(f'Building model {model_idx}')
model = build_model(model_idx=model_idx, args=args)
if args.fine_tune_coff != 1 and args.checkpoint_paths is not None:
debug("Fine tune fc layer with different lr")
initialize_weights(model_idx=model_idx, model=model.ffn, distinct_init=args.distinct_init)
############### FREEZE BLOCK ###########
# for name, param in model.named_parameters():
# if name.startswith("grover."):
# param.requires_grad = False
# # Train prediction layers (readout + two FFNs)
# else:
# param.requires_grad = True
# print("TRAINABLE PARAMETERS:")
# for name, p in model.named_parameters():
# if p.requires_grad:
# print(" ", name)
############### FREEZE BLOCK ###########
# Get loss and metric functions
loss_func = get_loss_func(args, model)
optimizer = build_optimizer(model, args)
debug(model)
debug(f'Number of parameters = {param_count(model):,}')
if args.cuda:
debug('Moving model to cuda')
model = model.cuda()
# Ensure that model is saved in correct location for evaluation if 0 epochs
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
# Learning rate schedulers
scheduler = build_lr_scheduler(optimizer, args)
# Bulid data_loader
shuffle = True
mol_collator = MolCollator(shared_dict={}, args=args)
train_data = DataLoader(train_data,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=10,
collate_fn=mol_collator)
# Run training
best_score = float('inf') if args.minimize_score else -float('inf')
best_epoch, n_iter = 0, 0
min_val_loss = float('inf')
for epoch in range(args.epochs):
s_time = time.time()
n_iter, train_loss = train(
epoch=epoch,
model=model,
data=train_data,
loss_func=loss_func,
optimizer=optimizer,
scheduler=scheduler,
args=args,
n_iter=n_iter,
shared_dict=shared_dict,
logger=logger
)
t_time = time.time() - s_time
s_time = time.time()
val_scores, val_loss = evaluate(
model=model,
data=val_data,
loss_func=loss_func,
num_tasks=args.num_tasks,
metric_func=metric_func,
batch_size=args.batch_size,
dataset_type=args.dataset_type,
scaler=scaler,
shared_dict=shared_dict,
logger=logger,
args=args
)
v_time = time.time() - s_time
# Average validation score
avg_val_score = np.nanmean(val_scores)
# Logged after lr step
if isinstance(scheduler, ExponentialLR):
scheduler.step()
if args.show_individual_scores:
# Individual validation scores
for task_name, val_score in zip(args.task_names, val_scores):
debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
print('Epoch: {:04d}'.format(epoch),
'loss_train: {:.6f}'.format(train_loss),
'loss_val: {:.6f}'.format(val_loss),
f'{args.metric}_val: {avg_val_score:.4f}',
# 'auc_val: {:.4f}'.format(avg_val_score),
'cur_lr: {:.5f}'.format(scheduler.get_lr()[-1]),
't_time: {:.4f}s'.format(t_time),
'v_time: {:.4f}s'.format(v_time))
if args.tensorboard:
writer.add_scalar('loss/train', train_loss, epoch)
writer.add_scalar('loss/val', val_loss, epoch)
writer.add_scalar(f'{args.metric}_val', avg_val_score, epoch)
# Save model checkpoint if improved validation score
if args.select_by_loss:
if val_loss < min_val_loss:
min_val_loss, best_epoch = val_loss, epoch
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
else:
if args.minimize_score and avg_val_score < best_score or \
not args.minimize_score and avg_val_score > best_score:
best_score, best_epoch = avg_val_score, epoch
save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
if epoch - best_epoch > args.early_stop_epoch:
break
ensemble_scores = 0.0
# Evaluate on test set using model with best validation score
if args.select_by_loss:
info(f'Model {model_idx} best val loss = {min_val_loss:.6f} on epoch {best_epoch}')
else:
info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger)
test_preds, _ = predict(
model=model,
data=test_data,
loss_func=loss_func,
batch_size=args.batch_size,
logger=logger,
shared_dict=shared_dict,
scaler=scaler,
args=args
)
test_scores = evaluate_predictions(
preds=test_preds,
targets=test_targets,
num_tasks=args.num_tasks,
metric_func=metric_func,
dataset_type=args.dataset_type,
logger=logger
)
if len(test_preds) != 0:
sum_test_preds += np.array(test_preds, dtype=float)
# Average test score
avg_test_score = np.nanmean(test_scores)
info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
if args.show_individual_scores:
# Individual test scores
for task_name, test_score in zip(args.task_names, test_scores):
info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
# Evaluate ensemble on test set
avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()
ensemble_scores = evaluate_predictions(
preds=avg_test_preds,
targets=test_targets,
num_tasks=args.num_tasks,
metric_func=metric_func,
dataset_type=args.dataset_type,
logger=logger
)
ind = [['preds'] * args.num_tasks + ['targets'] * args.num_tasks, args.task_names * 2]
ind = pd.MultiIndex.from_tuples(list(zip(*ind)))
data = np.concatenate([np.array(avg_test_preds), np.array(test_targets)], 1)
test_result = pd.DataFrame(data, index=test_smiles, columns=ind)
test_result.to_csv(os.path.join(args.save_dir, 'test_result.csv'))
# Average ensemble score
avg_ensemble_test_score = np.nanmean(ensemble_scores)
info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')
# Individual ensemble scores
if args.show_individual_scores:
for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')
return ensemble_scores
def load_data(args, debug, logger):
"""
load the training data.
:param args:
:param debug:
:param logger:
:return:
"""
# Get data
debug('Loading data')
args.task_names = get_task_names(args.data_path)
data = get_data(path=args.data_path, args=args, logger=logger)
if data.data[0].features is not None:
args.features_dim = len(data.data[0].features)
else:
args.features_dim = 0
shared_dict = {}
args.num_tasks = data.num_tasks()
args.features_size = data.features_size()
debug(f'Number of tasks = {args.num_tasks}')
# Split data
debug(f'Splitting data with seed {args.seed}')
if args.separate_test_path:
test_data = get_data(path=args.separate_test_path, args=args,
features_path=args.separate_test_features_path, logger=logger)
if args.separate_val_path:
val_data = get_data(path=args.separate_val_path, args=args,
features_path=args.separate_val_features_path, logger=logger)
if args.separate_val_path and args.separate_test_path:
train_data = data
elif args.separate_val_path:
train_data, _, test_data = split_data(data=data, split_type=args.split_type,
sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
elif args.separate_test_path:
train_data, val_data, _ = split_data(data=data, split_type=args.split_type,
sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
else:
train_data, val_data, test_data = split_data(data=data, split_type=args.split_type,
sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)
if args.dataset_type == 'classification':
class_sizes = get_class_sizes(data)
debug('Class sizes')
for i, task_class_sizes in enumerate(class_sizes):
debug(f'{args.task_names[i]} '
f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')
#if args.save_smiles_splits:
# save_splits(args, test_data, train_data, val_data)
if args.features_scaling:
features_scaler = train_data.normalize_features(replace_nan_token=0)
val_data.normalize_features(features_scaler)
test_data.normalize_features(features_scaler)
else:
features_scaler = None
args.train_data_size = len(train_data)
debug(f'Total size = {len(data):,} | '
f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')
# Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
if args.dataset_type == 'regression':
debug('Fitting scaler')
_, train_targets = train_data.smiles(), train_data.targets()
scaler = StandardScaler().fit(train_targets)
scaled_targets = scaler.transform(train_targets).tolist()
train_data.set_targets(scaled_targets)
val_targets = val_data.targets()
scaled_val_targets = scaler.transform(val_targets).tolist()
val_data.set_targets(scaled_val_targets)
else:
scaler = None
return features_scaler, scaler, shared_dict, test_data, train_data, val_data
def save_splits(args, test_data, train_data, val_data):
"""
Save the splits.
:param args:
:param test_data:
:param train_data:
:param val_data:
:return:
"""
with open(args.data_path, 'r') as f:
reader = csv.reader(f)
header = next(reader)
lines_by_smiles = {}
indices_by_smiles = {}
for i, line in enumerate(reader):
smiles = line[0]
lines_by_smiles[smiles] = line
indices_by_smiles[smiles] = i
all_split_indices = []
for dataset, name in [(train_data, 'train'), (val_data, 'val'), (test_data, 'test')]:
with open(os.path.join(args.save_dir, name + '_smiles.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(['smiles'])
for smiles in dataset.smiles():
writer.writerow([smiles])
with open(os.path.join(args.save_dir, name + '_full.csv'), 'w') as f:
writer = csv.writer(f)
writer.writerow(header)
for smiles in dataset.smiles():
writer.writerow(lines_by_smiles[smiles])
split_indices = []
for smiles in dataset.smiles():
split_indices.append(indices_by_smiles[smiles])
split_indices = sorted(split_indices)
all_split_indices.append(split_indices)
with open(os.path.join(args.save_dir, 'split_indices.pckl'), 'wb') as f:
pickle.dump(all_split_indices, f)
return writer
|