File size: 11,596 Bytes
f986893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"""

The GROVER trainer.

"""
import os
import time
from logging import Logger
from typing import List, Tuple
from collections.abc import Callable
import torch
from torch.nn import Module
from torch.utils.data import DataLoader

from grover.model.models import GroverTask
from grover.util.multi_gpu_wrapper import MultiGpuWrapper as mgw


class GROVERTrainer:
    def __init__(self,

                 args,

                 embedding_model: Module,

                 atom_vocab_size: int,  # atom vocab size

                 bond_vocab_size: int,

                 fg_szie: int,

                 train_dataloader: DataLoader,

                 test_dataloader: DataLoader,

                 optimizer_builder: Callable,

                 scheduler_builder: Callable,

                 logger: Logger = None,

                 with_cuda: bool = False,

                 enable_multi_gpu: bool = False):
        """

        The init function of GROVERTrainer

        :param args: the input arguments.

        :param embedding_model: the model to generate atom/bond embeddings.

        :param atom_vocab_size: the vocabulary size of atoms.

        :param bond_vocab_size: the vocabulary size of bonds.

        :param fg_szie: the size of semantic motifs (functional groups)

        :param train_dataloader: the data loader of train data.

        :param test_dataloader: the data loader of validation data.

        :param optimizer_builder: the function of building the optimizer.

        :param scheduler_builder: the function of building the scheduler.

        :param logger: the logger

        :param with_cuda: enable gpu training.

        :param enable_multi_gpu: enable multi_gpu traning.

        """

        self.args = args
        self.with_cuda = with_cuda
        self.grover = embedding_model
        self.model = GroverTask(args, embedding_model, atom_vocab_size, bond_vocab_size, fg_szie)
        self.loss_func = self.model.get_loss_func(args)
        self.enable_multi_gpu = enable_multi_gpu

        self.atom_vocab_size = atom_vocab_size
        self.bond_vocab_size = bond_vocab_size
        self.debug = logger.debug if logger is not None else print

        if self.with_cuda:
            # print("Using %d GPUs for training." % (torch.cuda.device_count()))
            self.model = self.model.cuda()

        self.train_data = train_dataloader
        self.test_data = test_dataloader

        self.optimizer = optimizer_builder(self.model, self.args)
        self.scheduler = scheduler_builder(self.optimizer, self.args)
        if self.enable_multi_gpu:
            self.optimizer = mgw.DistributedOptimizer(self.optimizer,
                                                      named_parameters=self.model.named_parameters())
        self.args = args
        self.n_iter = 0

    def broadcast_parameters(self) -> None:
        """

        Broadcast parameters before training.

        :return: no return.

        """
        if self.enable_multi_gpu:
            # broadcast parameters & optimizer state.
            mgw.broadcast_parameters(self.model.state_dict(), root_rank=0)
            mgw.broadcast_optimizer_state(self.optimizer, root_rank=0)

    def train(self, epoch: int) -> List:
        """

        The training iteration

        :param epoch: the current epoch number.

        :return: the loss terms of current epoch.

        """
        # return self.mock_iter(epoch, self.train_data, train=True)
        return self.iter(epoch, self.train_data, train=True)

    def test(self, epoch: int) -> List:
        """

        The test/validaiion iteration

        :param epoch: the current epoch number.

        :return:  the loss terms as a list

        """
        # return self.mock_iter(epoch, self.test_data, train=False)
        return self.iter(epoch, self.test_data, train=False)

    def mock_iter(self, epoch: int, data_loader: DataLoader, train: bool = True) -> List:
        """

        Perform a mock iteration. For test only.

        :param epoch: the current epoch number.

        :param data_loader: the data loader.

        :param train: True: train model, False: validation model.

        :return: the loss terms as a list

        """

        for _, _ in enumerate(data_loader):
            self.scheduler.step()
        cum_loss_sum = 0.0
        self.n_iter += self.args.batch_size
        return self.n_iter, cum_loss_sum, (0, 0, 0, 0, 0, 0)

    def iter(self, epoch, data_loader, train=True) -> List:
        """

        Perform a training / validation iteration.

        :param epoch: the current epoch number.

        :param data_loader: the data loader.

        :param train: True: train model, False: validation model.

        :return: the loss terms as a list

        """

        if train:
            self.model.train()
        else:
            self.model.eval()

        loss_sum, iter_count = 0, 0
        cum_loss_sum, cum_iter_count = 0, 0
        av_loss_sum, bv_loss_sum, fg_loss_sum, av_dist_loss_sum, bv_dist_loss_sum, fg_dist_loss_sum = 0, 0, 0, 0, 0, 0
        # loss_func = self.model.get_loss_func(self.args)

        for _, item in enumerate(data_loader):
            batch_graph = item["graph_input"]
            targets = item["targets"]

            if next(self.model.parameters()).is_cuda:
                targets["av_task"] = targets["av_task"].cuda()
                targets["bv_task"] = targets["bv_task"].cuda()
                targets["fg_task"] = targets["fg_task"].cuda()

            preds = self.model(batch_graph)

            # # ad-hoc code, for visualizing a model, comment this block when it is not needed
            # import dglt.contrib.grover.vis_model as vis_model
            # for task in ['av_task', 'bv_task', 'fg_task']:
            #     vis_graph = vis_model.make_dot(self.model(batch_graph)[task],
            #                                    params=dict(self.model.named_parameters()))
            #     # vis_graph.view()
            #     vis_graph.render(f"{self.args.backbone}_model_{task}_vis.png", format="png")
            # exit()

            loss, av_loss, bv_loss, fg_loss, av_dist_loss, bv_dist_loss, fg_dist_loss = self.loss_func(preds, targets)

            loss_sum += loss.item()
            iter_count += self.args.batch_size

            if train:
                cum_loss_sum += loss.item()
                # Run model
                self.model.zero_grad()
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
                self.scheduler.step()
            else:
                # For eval model, only consider the loss of three task.
                cum_loss_sum += av_loss.item()
                cum_loss_sum += bv_loss.item()
                cum_loss_sum += fg_loss.item()

            av_loss_sum += av_loss.item()
            bv_loss_sum += bv_loss.item()
            fg_loss_sum += fg_loss.item()
            av_dist_loss_sum += av_dist_loss.item() if type(av_dist_loss) != float else av_dist_loss
            bv_dist_loss_sum += bv_dist_loss.item() if type(bv_dist_loss) != float else bv_dist_loss
            fg_dist_loss_sum += fg_dist_loss.item() if type(fg_dist_loss) != float else fg_dist_loss

            cum_iter_count += 1
            self.n_iter += self.args.batch_size

            # Debug only.
            # if i % 50 == 0:
            #     print(f"epoch: {epoch}, batch_id: {i}, av_loss: {av_loss}, bv_loss: {bv_loss}, "
            #           f"fg_loss: {fg_loss}, av_dist_loss: {av_dist_loss}, bv_dist_loss: {bv_dist_loss}, "
            #           f"fg_dist_loss: {fg_dist_loss}")

        cum_loss_sum /= cum_iter_count
        av_loss_sum /= cum_iter_count
        bv_loss_sum /= cum_iter_count
        fg_loss_sum /= cum_iter_count
        av_dist_loss_sum /= cum_iter_count
        bv_dist_loss_sum /= cum_iter_count
        fg_dist_loss_sum /= cum_iter_count

        return self.n_iter, cum_loss_sum, (av_loss_sum, bv_loss_sum, fg_loss_sum, av_dist_loss_sum,
                                           bv_dist_loss_sum, fg_dist_loss_sum)

    def save(self, epoch, file_path, name=None) -> str:
        """

        Save the intermediate models during training.

        :param epoch: the epoch number.

        :param file_path: the file_path to save the model.

        :return: the output path.

        """
        # add specific time in model fine name, in order to distinguish different saved models
        now = time.localtime()
        if name is None:
            name = "_%04d_%02d_%02d_%02d_%02d_%02d" % (
                now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec)
        output_path = file_path + name + ".ep%d" % epoch
        scaler = None
        features_scaler = None
        state = {
            'args': self.args,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler_step': self.scheduler.current_step,
            "epoch": epoch,
            'data_scaler': {
                'means': scaler.means,
                'stds': scaler.stds
            } if scaler is not None else None,
            'features_scaler': {
                'means': features_scaler.means,
                'stds': features_scaler.stds
            } if features_scaler is not None else None
        }
        torch.save(state, output_path)

        # Is this necessary?
        # if self.with_cuda:
        #    self.model = self.model.cuda()
        print("EP:%d Model Saved on:" % epoch, output_path)
        return output_path

    def save_tmp(self, epoch, file_path, rank=0):
        """

        Save the models for auto-restore during training.

        The model are stored in file_path/tmp folder and will replaced on each epoch.

        :param epoch: the epoch number.

        :param file_path: the file_path to store the model.

        :param rank: the current rank (decrypted).

        :return:

        """
        store_path = os.path.join(file_path, "tmp")
        if not os.path.exists(store_path):
            os.makedirs(store_path, exist_ok=True)
        store_path = os.path.join(store_path, "model.%d" % rank)
        state = {
            'args': self.args,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'scheduler_step': self.scheduler.current_step,
            "epoch": epoch
        }
        torch.save(state, store_path)

    def restore(self, file_path, rank=0) -> Tuple[int, int]:
        """

        Restore the training state saved by save_tmp.

        :param file_path: the file_path to store the model.

        :param rank: the current rank (decrypted).

        :return: the restored epoch number and the scheduler_step in scheduler.

        """
        cpt_path = os.path.join(file_path, "tmp", "model.%d" % rank)
        if not os.path.exists(cpt_path):
            print("No checkpoint found %d")
            return 0, 0
        cpt = torch.load(cpt_path)
        self.model.load_state_dict(cpt["state_dict"])
        self.optimizer.load_state_dict(cpt["optimizer"])
        epoch = cpt["epoch"]
        scheduler_step = cpt["scheduler_step"]
        self.scheduler.current_step = scheduler_step
        print("Restore checkpoint, current epoch: %d" % (epoch))
        return epoch, scheduler_step