Spaces:
Sleeping
Sleeping
File size: 11,596 Bytes
f986893 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 |
"""
The GROVER trainer.
"""
import os
import time
from logging import Logger
from typing import List, Tuple
from collections.abc import Callable
import torch
from torch.nn import Module
from torch.utils.data import DataLoader
from grover.model.models import GroverTask
from grover.util.multi_gpu_wrapper import MultiGpuWrapper as mgw
class GROVERTrainer:
def __init__(self,
args,
embedding_model: Module,
atom_vocab_size: int, # atom vocab size
bond_vocab_size: int,
fg_szie: int,
train_dataloader: DataLoader,
test_dataloader: DataLoader,
optimizer_builder: Callable,
scheduler_builder: Callable,
logger: Logger = None,
with_cuda: bool = False,
enable_multi_gpu: bool = False):
"""
The init function of GROVERTrainer
:param args: the input arguments.
:param embedding_model: the model to generate atom/bond embeddings.
:param atom_vocab_size: the vocabulary size of atoms.
:param bond_vocab_size: the vocabulary size of bonds.
:param fg_szie: the size of semantic motifs (functional groups)
:param train_dataloader: the data loader of train data.
:param test_dataloader: the data loader of validation data.
:param optimizer_builder: the function of building the optimizer.
:param scheduler_builder: the function of building the scheduler.
:param logger: the logger
:param with_cuda: enable gpu training.
:param enable_multi_gpu: enable multi_gpu traning.
"""
self.args = args
self.with_cuda = with_cuda
self.grover = embedding_model
self.model = GroverTask(args, embedding_model, atom_vocab_size, bond_vocab_size, fg_szie)
self.loss_func = self.model.get_loss_func(args)
self.enable_multi_gpu = enable_multi_gpu
self.atom_vocab_size = atom_vocab_size
self.bond_vocab_size = bond_vocab_size
self.debug = logger.debug if logger is not None else print
if self.with_cuda:
# print("Using %d GPUs for training." % (torch.cuda.device_count()))
self.model = self.model.cuda()
self.train_data = train_dataloader
self.test_data = test_dataloader
self.optimizer = optimizer_builder(self.model, self.args)
self.scheduler = scheduler_builder(self.optimizer, self.args)
if self.enable_multi_gpu:
self.optimizer = mgw.DistributedOptimizer(self.optimizer,
named_parameters=self.model.named_parameters())
self.args = args
self.n_iter = 0
def broadcast_parameters(self) -> None:
"""
Broadcast parameters before training.
:return: no return.
"""
if self.enable_multi_gpu:
# broadcast parameters & optimizer state.
mgw.broadcast_parameters(self.model.state_dict(), root_rank=0)
mgw.broadcast_optimizer_state(self.optimizer, root_rank=0)
def train(self, epoch: int) -> List:
"""
The training iteration
:param epoch: the current epoch number.
:return: the loss terms of current epoch.
"""
# return self.mock_iter(epoch, self.train_data, train=True)
return self.iter(epoch, self.train_data, train=True)
def test(self, epoch: int) -> List:
"""
The test/validaiion iteration
:param epoch: the current epoch number.
:return: the loss terms as a list
"""
# return self.mock_iter(epoch, self.test_data, train=False)
return self.iter(epoch, self.test_data, train=False)
def mock_iter(self, epoch: int, data_loader: DataLoader, train: bool = True) -> List:
"""
Perform a mock iteration. For test only.
:param epoch: the current epoch number.
:param data_loader: the data loader.
:param train: True: train model, False: validation model.
:return: the loss terms as a list
"""
for _, _ in enumerate(data_loader):
self.scheduler.step()
cum_loss_sum = 0.0
self.n_iter += self.args.batch_size
return self.n_iter, cum_loss_sum, (0, 0, 0, 0, 0, 0)
def iter(self, epoch, data_loader, train=True) -> List:
"""
Perform a training / validation iteration.
:param epoch: the current epoch number.
:param data_loader: the data loader.
:param train: True: train model, False: validation model.
:return: the loss terms as a list
"""
if train:
self.model.train()
else:
self.model.eval()
loss_sum, iter_count = 0, 0
cum_loss_sum, cum_iter_count = 0, 0
av_loss_sum, bv_loss_sum, fg_loss_sum, av_dist_loss_sum, bv_dist_loss_sum, fg_dist_loss_sum = 0, 0, 0, 0, 0, 0
# loss_func = self.model.get_loss_func(self.args)
for _, item in enumerate(data_loader):
batch_graph = item["graph_input"]
targets = item["targets"]
if next(self.model.parameters()).is_cuda:
targets["av_task"] = targets["av_task"].cuda()
targets["bv_task"] = targets["bv_task"].cuda()
targets["fg_task"] = targets["fg_task"].cuda()
preds = self.model(batch_graph)
# # ad-hoc code, for visualizing a model, comment this block when it is not needed
# import dglt.contrib.grover.vis_model as vis_model
# for task in ['av_task', 'bv_task', 'fg_task']:
# vis_graph = vis_model.make_dot(self.model(batch_graph)[task],
# params=dict(self.model.named_parameters()))
# # vis_graph.view()
# vis_graph.render(f"{self.args.backbone}_model_{task}_vis.png", format="png")
# exit()
loss, av_loss, bv_loss, fg_loss, av_dist_loss, bv_dist_loss, fg_dist_loss = self.loss_func(preds, targets)
loss_sum += loss.item()
iter_count += self.args.batch_size
if train:
cum_loss_sum += loss.item()
# Run model
self.model.zero_grad()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.scheduler.step()
else:
# For eval model, only consider the loss of three task.
cum_loss_sum += av_loss.item()
cum_loss_sum += bv_loss.item()
cum_loss_sum += fg_loss.item()
av_loss_sum += av_loss.item()
bv_loss_sum += bv_loss.item()
fg_loss_sum += fg_loss.item()
av_dist_loss_sum += av_dist_loss.item() if type(av_dist_loss) != float else av_dist_loss
bv_dist_loss_sum += bv_dist_loss.item() if type(bv_dist_loss) != float else bv_dist_loss
fg_dist_loss_sum += fg_dist_loss.item() if type(fg_dist_loss) != float else fg_dist_loss
cum_iter_count += 1
self.n_iter += self.args.batch_size
# Debug only.
# if i % 50 == 0:
# print(f"epoch: {epoch}, batch_id: {i}, av_loss: {av_loss}, bv_loss: {bv_loss}, "
# f"fg_loss: {fg_loss}, av_dist_loss: {av_dist_loss}, bv_dist_loss: {bv_dist_loss}, "
# f"fg_dist_loss: {fg_dist_loss}")
cum_loss_sum /= cum_iter_count
av_loss_sum /= cum_iter_count
bv_loss_sum /= cum_iter_count
fg_loss_sum /= cum_iter_count
av_dist_loss_sum /= cum_iter_count
bv_dist_loss_sum /= cum_iter_count
fg_dist_loss_sum /= cum_iter_count
return self.n_iter, cum_loss_sum, (av_loss_sum, bv_loss_sum, fg_loss_sum, av_dist_loss_sum,
bv_dist_loss_sum, fg_dist_loss_sum)
def save(self, epoch, file_path, name=None) -> str:
"""
Save the intermediate models during training.
:param epoch: the epoch number.
:param file_path: the file_path to save the model.
:return: the output path.
"""
# add specific time in model fine name, in order to distinguish different saved models
now = time.localtime()
if name is None:
name = "_%04d_%02d_%02d_%02d_%02d_%02d" % (
now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min, now.tm_sec)
output_path = file_path + name + ".ep%d" % epoch
scaler = None
features_scaler = None
state = {
'args': self.args,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler_step': self.scheduler.current_step,
"epoch": epoch,
'data_scaler': {
'means': scaler.means,
'stds': scaler.stds
} if scaler is not None else None,
'features_scaler': {
'means': features_scaler.means,
'stds': features_scaler.stds
} if features_scaler is not None else None
}
torch.save(state, output_path)
# Is this necessary?
# if self.with_cuda:
# self.model = self.model.cuda()
print("EP:%d Model Saved on:" % epoch, output_path)
return output_path
def save_tmp(self, epoch, file_path, rank=0):
"""
Save the models for auto-restore during training.
The model are stored in file_path/tmp folder and will replaced on each epoch.
:param epoch: the epoch number.
:param file_path: the file_path to store the model.
:param rank: the current rank (decrypted).
:return:
"""
store_path = os.path.join(file_path, "tmp")
if not os.path.exists(store_path):
os.makedirs(store_path, exist_ok=True)
store_path = os.path.join(store_path, "model.%d" % rank)
state = {
'args': self.args,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'scheduler_step': self.scheduler.current_step,
"epoch": epoch
}
torch.save(state, store_path)
def restore(self, file_path, rank=0) -> Tuple[int, int]:
"""
Restore the training state saved by save_tmp.
:param file_path: the file_path to store the model.
:param rank: the current rank (decrypted).
:return: the restored epoch number and the scheduler_step in scheduler.
"""
cpt_path = os.path.join(file_path, "tmp", "model.%d" % rank)
if not os.path.exists(cpt_path):
print("No checkpoint found %d")
return 0, 0
cpt = torch.load(cpt_path)
self.model.load_state_dict(cpt["state_dict"])
self.optimizer.load_state_dict(cpt["optimizer"])
epoch = cpt["epoch"]
scheduler_step = cpt["scheduler_step"]
self.scheduler.current_step = scheduler_step
print("Restore checkpoint, current epoch: %d" % (epoch))
return epoch, scheduler_step
|