File size: 9,812 Bytes
f986893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
"""

The GROVER pretrain function.

"""
import os
import time
from argparse import Namespace
from logging import Logger

import torch
from torch.utils.data import DataLoader

from grover.data.dist_sampler import DistributedSampler
from grover.data.groverdataset import get_data, split_data, GroverCollator, BatchMolDataset
from grover.data.torchvocab import MolVocab
from grover.model.models import GROVEREmbedding
from grover.util.multi_gpu_wrapper import MultiGpuWrapper as mgw
from grover.util.nn_utils import param_count
from grover.util.utils import build_optimizer, build_lr_scheduler
from task.grovertrainer import GROVERTrainer


def pretrain_model(args: Namespace, logger: Logger = None):
    """

    The entrey of pretrain.

    :param args: the argument.

    :param logger: the logger.

    :return:

    """

    # avoid auto optimized import by pycharm.
    a = MolVocab
    s_time = time.time()
    run_training(args=args, logger=logger)
    e_time = time.time()
    print("Total Time: %.3f" % (e_time - s_time))


def pre_load_data(dataset: BatchMolDataset, rank: int, num_replicas: int, sample_per_file: int = None, epoch: int = 0):
    """

    Pre-load data at the beginning of each epoch.

    :param dataset: the training dataset.

    :param rank: the rank of the current worker.

    :param num_replicas: the replicas.

    :param sample_per_file: the number of the data points in each file. When sample_per_file is None, all data will be

    loaded. It implies the testing phase. (TODO: bad design here.)

    :param epoch: the epoch number.

    :return:

    """
    mock_sampler = DistributedSampler(dataset, num_replicas=num_replicas, rank=rank, shuffle=False,
                                      sample_per_file=sample_per_file)
    mock_sampler.set_epoch(epoch)
    pre_indices = mock_sampler.get_indices()
    for i in pre_indices:
        dataset.load_data(i)


def run_training(args, logger):
    """

    Run the pretrain task.

    :param args:

    :param logger:

    :return:

    """

    # initalize the logger.
    if logger is not None:
        debug, _ = logger.debug, logger.info
    else:
        debug = print

    # initialize the horovod library
    if args.enable_multi_gpu:
        mgw.init()

    # binding training to GPUs.
    master_worker = (mgw.rank() == 0) if args.enable_multi_gpu else True
    # pin GPU to local rank. By default, we use gpu:0 for training.
    local_gpu_idx = mgw.local_rank() if args.enable_multi_gpu else 0
    with_cuda = args.cuda
    if with_cuda:
        torch.cuda.set_device(local_gpu_idx)

    # get rank an  number of workers
    rank = mgw.rank() if args.enable_multi_gpu else 0
    num_replicas = mgw.size() if args.enable_multi_gpu else 1
    # print("Rank: %d Rep: %d" % (rank, num_replicas))

    # load file paths of the data.
    if master_worker:
        print(args)
        if args.enable_multi_gpu:
            debug("Total workers: %d" % (mgw.size()))
        debug('Loading data')
    data, sample_per_file = get_data(data_path=args.data_path)

    # data splitting
    if master_worker:
        debug(f'Splitting data with seed 0.')
    train_data, test_data, _ = split_data(data=data, sizes=(0.9, 0.1, 0.0), seed=0, logger=logger)

    # Here the true train data size is the train_data divided by #GPUs
    if args.enable_multi_gpu:
        args.train_data_size = len(train_data) // mgw.size()
    else:
        args.train_data_size = len(train_data)
    if master_worker:
        debug(f'Total size = {len(data):,} | '
              f'train size = {len(train_data):,} | val size = {len(test_data):,}')

    # load atom and bond vocabulary and the semantic motif labels.
    atom_vocab = MolVocab.load_vocab(args.atom_vocab_path)
    bond_vocab = MolVocab.load_vocab(args.bond_vocab_path)
    atom_vocab_size, bond_vocab_size = len(atom_vocab), len(bond_vocab)

    # Hard coding here, since we haven't load any data yet!
    fg_size = 85
    shared_dict = {}
    mol_collator = GroverCollator(shared_dict=shared_dict, atom_vocab=atom_vocab, bond_vocab=bond_vocab, args=args)
    if master_worker:
        debug("atom vocab size: %d, bond vocab size: %d, Number of FG tasks: %d" % (atom_vocab_size,
                                                                                    bond_vocab_size, fg_size))

    # Define the distributed sampler. If using the single card, the sampler will be None.
    train_sampler = None
    test_sampler = None
    shuffle = True
    if args.enable_multi_gpu:
        # If not shuffle, the performance may decayed.
        train_sampler = DistributedSampler(
            train_data, num_replicas=mgw.size(), rank=mgw.rank(), shuffle=True, sample_per_file=sample_per_file)
        # Here sample_per_file in test_sampler is None, indicating the test sampler would not divide the test samples by
        # rank. (TODO: bad design here.)
        test_sampler = DistributedSampler(
            test_data, num_replicas=mgw.size(), rank=mgw.rank(), shuffle=False)
        train_sampler.set_epoch(args.epochs)
        test_sampler.set_epoch(1)
        # if we enables multi_gpu training. shuffle should be disabled.
        shuffle = False

    # Pre load data. (Maybe unnecessary. )
    pre_load_data(train_data, rank, num_replicas, sample_per_file)
    pre_load_data(test_data, rank, num_replicas)
    if master_worker:
        # print("Pre-loaded training data: %d" % train_data.count_loaded_datapoints())
        print("Pre-loaded test data: %d" % test_data.count_loaded_datapoints())

    # Build dataloader
    train_data_dl = DataLoader(train_data,
                               batch_size=args.batch_size,
                               shuffle=shuffle,
                               num_workers=12,
                               sampler=train_sampler,
                               collate_fn=mol_collator)
    test_data_dl = DataLoader(test_data,
                              batch_size=args.batch_size,
                              shuffle=shuffle,
                              num_workers=10,
                              sampler=test_sampler,
                              collate_fn=mol_collator)

    # Build the embedding model.
    grover_model = GROVEREmbedding(args)

    #  Build the trainer.
    trainer = GROVERTrainer(args=args,
                            embedding_model=grover_model,
                            atom_vocab_size=atom_vocab_size,
                            bond_vocab_size=bond_vocab_size,
                            fg_szie=fg_size,
                            train_dataloader=train_data_dl,
                            test_dataloader=test_data_dl,
                            optimizer_builder=build_optimizer,
                            scheduler_builder=build_lr_scheduler,
                            logger=logger,
                            with_cuda=with_cuda,
                            enable_multi_gpu=args.enable_multi_gpu)

    # Restore the interrupted training.
    model_dir = os.path.join(args.save_dir, "model")
    resume_from_epoch = 0
    resume_scheduler_step = 0
    if master_worker:
        resume_from_epoch, resume_scheduler_step = trainer.restore(model_dir)
    if args.enable_multi_gpu:
        resume_from_epoch = mgw.broadcast(torch.tensor(resume_from_epoch), root_rank=0, name="resume_from_epoch").item()
        resume_scheduler_step = mgw.broadcast(torch.tensor(resume_scheduler_step),
                                              root_rank=0, name="resume_scheduler_step").item()
        trainer.scheduler.current_step = resume_scheduler_step
        print("Restored epoch: %d Restored scheduler step: %d" % (resume_from_epoch, trainer.scheduler.current_step))
    trainer.broadcast_parameters()

    # Print model details.
    if master_worker:
        # Change order here.
        print(grover_model)
        print("Total parameters: %d" % param_count(trainer.grover))

    # Perform training.
    for epoch in range(resume_from_epoch + 1, args.epochs):
        s_time = time.time()

        # Data pre-loading.
        if args.enable_multi_gpu:
            train_sampler.set_epoch(epoch)
            train_data.clean_cache()
            idxs = train_sampler.get_indices()
            for local_gpu_idx in idxs:
                train_data.load_data(local_gpu_idx)
        d_time = time.time() - s_time

        # perform training and validation.
        s_time = time.time()
        _, train_loss, _ = trainer.train(epoch)
        t_time = time.time() - s_time
        s_time = time.time()
        _, val_loss, detailed_loss_val = trainer.test(epoch)
        val_av_loss, val_bv_loss, val_fg_loss, _, _, _ = detailed_loss_val
        v_time = time.time() - s_time

        # print information.
        if master_worker:
            print('Epoch: {:04d}'.format(epoch),
                  'loss_train: {:.6f}'.format(train_loss),
                  'loss_val: {:.6f}'.format(val_loss),
                  'loss_val_av: {:.6f}'.format(val_av_loss),
                  'loss_val_bv: {:.6f}'.format(val_bv_loss),
                  'loss_val_fg: {:.6f}'.format(val_fg_loss),
                  'cur_lr: {:.5f}'.format(trainer.scheduler.get_lr()[0]),
                  't_time: {:.4f}s'.format(t_time),
                  'v_time: {:.4f}s'.format(v_time),
                  'd_time: {:.4f}s'.format(d_time), flush=True)

            if epoch % args.save_interval == 0:
                trainer.save(epoch, model_dir)


            trainer.save_tmp(epoch, model_dir, rank)

    # Only save final version.
    if master_worker:
        trainer.save(args.epochs, model_dir, "")