File size: 17,777 Bytes
f986893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
"""

The training function used in the finetuning task.

"""
import csv
import logging
import os
import pickle
import time
from argparse import Namespace
from logging import Logger
from typing import List

import numpy as np
import pandas as pd
import torch
from torch.optim.lr_scheduler import ExponentialLR
from torch.utils.data import DataLoader

from grover.data import MolCollator
from grover.data import StandardScaler
from grover.util.metrics import get_metric_func
from grover.util.nn_utils import initialize_weights, param_count
from grover.util.scheduler import NoamLR
from grover.util.utils import build_optimizer, build_lr_scheduler, makedirs, load_checkpoint, get_loss_func, \
    save_checkpoint, build_model
from grover.util.utils import get_class_sizes, get_data, split_data, get_task_names
from task.predict import predict, evaluate, evaluate_predictions



def train(epoch, model, data, loss_func, optimizer, scheduler,

          shared_dict, args: Namespace, n_iter: int = 0,

          logger: logging.Logger = None):
    """

    Trains a model for an epoch.



    :param model: Model.

    :param data: A MoleculeDataset (or a list of MoleculeDatasets if using moe).

    :param loss_func: Loss function.

    :param optimizer: An Optimizer.

    :param scheduler: A learning rate scheduler.

    :param args: Arguments.

    :param n_iter: The number of iterations (training examples) trained on so far.

    :param logger: A logger for printing intermediate results.

    :param writer: A tensorboardX SummaryWriter.

    :return: The total number of iterations (training examples) trained on so far.

    """
    # debug = logger.debug if logger is not None else print

    model.train()

    # data.shuffle()

    loss_sum, iter_count = 0, 0
    cum_loss_sum, cum_iter_count = 0, 0


    mol_collator = MolCollator(shared_dict=shared_dict, args=args)

    num_workers = 4
    if type(data) == DataLoader:
        mol_loader = data
    else:
        mol_loader = DataLoader(data, batch_size=args.batch_size, shuffle=True,
                            num_workers=num_workers, collate_fn=mol_collator)

    for _, item in enumerate(mol_loader):
        _, batch, features_batch, mask, targets = item
        if next(model.parameters()).is_cuda:
            mask, targets = mask.cuda(), targets.cuda()
        class_weights = torch.ones(targets.shape)

        if args.cuda:
            class_weights = class_weights.cuda()

        # Run model
        model.zero_grad()
        preds = model(batch, features_batch)
        loss = loss_func(preds, targets) * class_weights * mask
        loss = loss.sum() / mask.sum()

        loss_sum += loss.item()
        iter_count += args.batch_size

        cum_loss_sum += loss.item()
        cum_iter_count += 1

        loss.backward()
        optimizer.step()

        if isinstance(scheduler, NoamLR):
            scheduler.step()

        n_iter += args.batch_size

        #if (n_iter // args.batch_size) % args.log_frequency == 0:
        #    lrs = scheduler.get_lr()
        #    loss_avg = loss_sum / iter_count
        #    loss_sum, iter_count = 0, 0
        #    lrs_str = ', '.join(f'lr_{i} = {lr:.4e}' for i, lr in enumerate(lrs))

    return n_iter, cum_loss_sum / cum_iter_count


def run_training(args: Namespace, time_start, logger: Logger = None) -> List[float]:
    """

    Trains a model and returns test scores on the model checkpoint with the highest validation score.



    :param args: Arguments.

    :param logger: Logger.

    :return: A list of ensemble scores for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print


    # pin GPU to local rank.
    idx = args.gpu
    if args.gpu is not None:
        torch.cuda.set_device(idx)

    features_scaler, scaler, shared_dict, test_data, train_data, val_data = load_data(args, debug, logger)

    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            if len(args.checkpoint_paths) == 1:
                cur_model = 0
            else:
                cur_model = model_idx
            debug(f'Loading model {cur_model} from {args.checkpoint_paths[cur_model]}')
            model = load_checkpoint(args.checkpoint_paths[cur_model], current_args=args, logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = build_model(model_idx=model_idx, args=args)

        if args.fine_tune_coff != 1 and args.checkpoint_paths is not None:
            debug("Fine tune fc layer with different lr")
            initialize_weights(model_idx=model_idx, model=model.ffn, distinct_init=args.distinct_init)


        ############### FREEZE BLOCK ###########
        # for name, param in model.named_parameters():
        #     if name.startswith("grover."):
        #         param.requires_grad = False

        #     # Train prediction layers (readout + two FFNs)
        #     else:
        #         param.requires_grad = True
        
        # print("TRAINABLE PARAMETERS:")
        # for name, p in model.named_parameters():
        #     if p.requires_grad:
        #         print("  ", name)
        ############### FREEZE BLOCK ###########

        # Get loss and metric functions
        loss_func = get_loss_func(args, model)

        optimizer = build_optimizer(model, args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
            model = model.cuda()

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Bulid data_loader
        shuffle = True
        mol_collator = MolCollator(shared_dict={}, args=args)
        train_data = DataLoader(train_data,
                                batch_size=args.batch_size,
                                shuffle=shuffle,
                                num_workers=10,
                                collate_fn=mol_collator)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        min_val_loss = float('inf')
        for epoch in range(args.epochs):
            s_time = time.time()
            n_iter, train_loss = train(
                epoch=epoch,
                model=model,
                data=train_data,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                shared_dict=shared_dict,
                logger=logger
            )
            t_time = time.time() - s_time
            s_time = time.time()
            val_scores, val_loss = evaluate(
                model=model,
                data=val_data,
                loss_func=loss_func,
                num_tasks=args.num_tasks,
                metric_func=metric_func,
                batch_size=args.batch_size,
                dataset_type=args.dataset_type,
                scaler=scaler,
                shared_dict=shared_dict,
                logger=logger,
                args=args
            )
            v_time = time.time() - s_time
            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            # Logged after lr step
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
            print('Epoch: {:04d}'.format(epoch),
                  'loss_train: {:.6f}'.format(train_loss),
                  'loss_val: {:.6f}'.format(val_loss),
                  f'{args.metric}_val: {avg_val_score:.4f}',
                  # 'auc_val: {:.4f}'.format(avg_val_score),
                  'cur_lr: {:.5f}'.format(scheduler.get_lr()[-1]),
                  't_time: {:.4f}s'.format(t_time),
                  'v_time: {:.4f}s'.format(v_time))

            if args.tensorboard:
                writer.add_scalar('loss/train', train_loss, epoch)
                writer.add_scalar('loss/val', val_loss, epoch)
                writer.add_scalar(f'{args.metric}_val', avg_val_score, epoch)


            # Save model checkpoint if improved validation score
            if args.select_by_loss:
                if val_loss < min_val_loss:
                    min_val_loss, best_epoch = val_loss, epoch
                    save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)
            else:
                if args.minimize_score and avg_val_score < best_score or \
                        not args.minimize_score and avg_val_score > best_score:
                    best_score, best_epoch = avg_val_score, epoch
                    save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)

            if epoch - best_epoch > args.early_stop_epoch:
                break

        ensemble_scores = 0.0

        # Evaluate on test set using model with best validation score
        if args.select_by_loss:
            info(f'Model {model_idx} best val loss = {min_val_loss:.6f} on epoch {best_epoch}')
        else:
            info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'), cuda=args.cuda, logger=logger)

        test_preds, _ = predict(
            model=model,
            data=test_data,
            loss_func=loss_func,
            batch_size=args.batch_size,
            logger=logger,
            shared_dict=shared_dict,
            scaler=scaler,
            args=args
        )

        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds, dtype=float)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')

        # Evaluate ensemble on test set
        avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

        ensemble_scores = evaluate_predictions(
            preds=avg_test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        ind = [['preds'] * args.num_tasks + ['targets'] * args.num_tasks, args.task_names * 2]
        ind = pd.MultiIndex.from_tuples(list(zip(*ind)))
        data = np.concatenate([np.array(avg_test_preds), np.array(test_targets)], 1)
        test_result = pd.DataFrame(data, index=test_smiles, columns=ind)
        test_result.to_csv(os.path.join(args.save_dir, 'test_result.csv'))

        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(ensemble_scores)
        info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
                info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')

    return ensemble_scores


def load_data(args, debug, logger):
    """

    load the training data.

    :param args:

    :param debug:

    :param logger:

    :return:

    """
    # Get data
    debug('Loading data')
    args.task_names = get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    if data.data[0].features is not None:
        args.features_dim = len(data.data[0].features)
    else:
        args.features_dim = 0
    shared_dict = {}
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')
    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path, args=args,
                             features_path=args.separate_test_features_path, logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path, args=args,
                            features_path=args.separate_val_features_path, logger=logger)
    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data, split_type=args.split_type,
                                              sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data, split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    else:
        train_data, val_data, test_data = split_data(data=data, split_type=args.split_type,
                                                     sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)
    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')

    #if args.save_smiles_splits:
    #    save_splits(args, test_data, train_data, val_data)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None
    args.train_data_size = len(train_data)
    debug(f'Total size = {len(data):,} | '
          f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        _, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)

        val_targets = val_data.targets()
        scaled_val_targets = scaler.transform(val_targets).tolist()
        val_data.set_targets(scaled_val_targets)
    else:
        scaler = None
    return features_scaler, scaler, shared_dict, test_data, train_data, val_data


def save_splits(args, test_data, train_data, val_data):
    """

    Save the splits.

    :param args:

    :param test_data:

    :param train_data:

    :param val_data:

    :return:

    """
    with open(args.data_path, 'r') as f:
        reader = csv.reader(f)
        header = next(reader)

        lines_by_smiles = {}
        indices_by_smiles = {}
        for i, line in enumerate(reader):
            smiles = line[0]
            lines_by_smiles[smiles] = line
            indices_by_smiles[smiles] = i

    all_split_indices = []
    for dataset, name in [(train_data, 'train'), (val_data, 'val'), (test_data, 'test')]:
        with open(os.path.join(args.save_dir, name + '_smiles.csv'), 'w') as f:
            writer = csv.writer(f)
            writer.writerow(['smiles'])
            for smiles in dataset.smiles():
                writer.writerow([smiles])
        with open(os.path.join(args.save_dir, name + '_full.csv'), 'w') as f:
            writer = csv.writer(f)
            writer.writerow(header)
            for smiles in dataset.smiles():
                writer.writerow(lines_by_smiles[smiles])
        split_indices = []
        for smiles in dataset.smiles():
            split_indices.append(indices_by_smiles[smiles])
            split_indices = sorted(split_indices)
        all_split_indices.append(split_indices)
    with open(os.path.join(args.save_dir, 'split_indices.pckl'), 'wb') as f:
        pickle.dump(all_split_indices, f)
    return writer