from rdkit import Chem from rdkit.Chem.MolStandardize import rdMolStandardize from rdkit import Chem import numpy as np import pandas as pd from datasets import load_dataset from typing import List, Optional TOX21_TASKS = [ "NR-AhR","NR-AR","NR-AR-LBD","NR-Aromatase","NR-ER","NR-ER-LBD","NR-PPAR-gamma","SR-ARE","SR-ATAD5","SR-HSE","SR-MMP","SR-p53" ] def create_clean_smiles(smiles_list: list[str]) -> tuple[list[str], np.ndarray]: """ Clean and canonicalize SMILES strings while staying in SMILES space. Returns (list of cleaned SMILES, mask of valid SMILES). """ clean_smis = [] valid_mask = [] cleaner = rdMolStandardize.CleanupParameters() tautomer_enumerator = rdMolStandardize.TautomerEnumerator() for smi in smiles_list: try: mol = Chem.MolFromSmiles(smi) if mol is None: valid_mask.append(False) continue # Cleanup and tautomer canonicalization mol = rdMolStandardize.Cleanup(mol, cleaner) mol = tautomer_enumerator.Canonicalize(mol) # -------- Charge filtering (prevents GROVER crash) -------- allowed_charges = {-1, 0, 1} bad_charge = False for atom in mol.GetAtoms(): if atom.GetFormalCharge() not in allowed_charges: bad_charge = True break if bad_charge: valid_mask.append(False) continue # ---------------------------------------------------------- # Canonical SMILES output clean_smi = Chem.MolToSmiles(mol, canonical=True) clean_smis.append(clean_smi) valid_mask.append(True) except Exception as e: print(f"Failed to clean {smi}: {e}") valid_mask.append(False) return clean_smis, np.array(valid_mask, dtype=bool) def clean_smiles_in_csv(input_csv: str, output_csv: str, smiles_col: str = "smiles", target_cols: Optional[List[str]] = None): """ Reads a CSV, cleans SMILES, and saves only valid cleaned rows with all target columns to a new CSV. """ # Load dataset df = pd.read_csv(input_csv) if smiles_col not in df.columns: raise ValueError(f"'{smiles_col}' column not found in CSV.") # Infer target columns if not specified if target_cols is None: target_cols = [c for c in df.columns if c != smiles_col] keep_cols = target_cols # Validate target columns missing_targets = [c for c in target_cols if c not in df.columns] if missing_targets: raise ValueError(f"Missing target columns in CSV: {missing_targets}") # Clean SMILES clean_smis, valid_mask = create_clean_smiles(df[smiles_col].tolist()) # Keep only valid rows df_clean = df.loc[valid_mask, keep_cols].copy() df_clean.insert(0, smiles_col, clean_smis) # smiles first column # Save cleaned dataset df_clean.to_csv(output_csv, index=False) print(f"✅ Cleaned dataset saved to '{output_csv}' ({len(df_clean)} valid molecules).") return valid_mask