Spaces:
Sleeping
Sleeping
| mport torch | |
| import numpy as np | |
| def ensure_tensor(img, transform): | |
| return transform(img).unsqueeze(0) # [1, C, H, W] | |
| def mc_dropout_predictions(model, input_tensor, n_samples=8): | |
| """ุชูุฏูุฑ ุนุฏู ุงููููู ุจุงูู Dropout""" | |
| model.train() | |
| preds = [] | |
| with torch.no_grad(): | |
| for _ in range(n_samples): | |
| out = model(input_tensor) | |
| probs = torch.softmax(out, dim=1).cpu().numpy() | |
| preds.append(probs) | |
| model.eval() | |
| preds = np.vstack(preds) | |
| mean = preds.mean(axis=0)[0] | |
| std = preds.std(axis=0)[0] | |
| return mean, std |