# SmolLM3 Training Pipeline Fixes Summary ## Issues Identified and Fixed ### 1. Format String Error **Issue**: `Unknown format code 'f' for object of type 'str'` **Root Cause**: The console callback was trying to format non-numeric values with f-string format specifiers **Fix**: Updated `src/trainer.py` to properly handle type conversion before formatting ```python # Before (causing error): print("Step {}: loss={:.4f}, lr={}".format(step, loss, lr)) # After (fixed): if isinstance(loss, (int, float)): loss_str = f"{loss:.4f}" else: loss_str = str(loss) if isinstance(lr, (int, float)): lr_str = f"{lr:.2e}" else: lr_str = str(lr) print(f"Step {step}: loss={loss_str}, lr={lr_str}") ``` ### 2. Callback Addition Error **Issue**: `'SmolLM3Trainer' object has no attribute 'add_callback'` **Root Cause**: The trainer was trying to add callbacks after creation, but callbacks should be passed during trainer creation **Fix**: Removed the incorrect `add_callback` call from `src/train.py` since callbacks are already handled in `SmolLM3Trainer._setup_trainer()` ### 3. Trackio Space Deployment Issues **Issue**: 404 errors when trying to create experiments via Trackio API **Root Cause**: The Trackio Space deployment was failing or the API endpoints weren't accessible **Fix**: Updated `src/monitoring.py` to gracefully handle Trackio Space failures and continue with HF Datasets integration ```python # Added graceful fallback: try: result = self.trackio_client.log_metrics(...) if "success" in result: logger.debug("Metrics logged to Trackio") else: logger.warning("Failed to log metrics to Trackio: %s", result) except Exception as e: logger.warning("Trackio logging failed: %s", e) ``` ### 4. Monitoring Integration Improvements **Enhancement**: Made monitoring more robust by: - Testing Trackio Space connectivity before attempting operations - Continuing with HF Datasets even if Trackio fails - Adding better error handling and logging - Ensuring experiments are saved to HF Datasets regardless of Trackio status ## Files Modified ### Core Training Files 1. **`src/trainer.py`** - Fixed format string error in SimpleConsoleCallback - Improved callback handling and error reporting 2. **`src/train.py`** - Removed incorrect `add_callback` call - Simplified trainer initialization 3. **`src/monitoring.py`** - Added graceful Trackio Space failure handling - Improved error logging and fallback mechanisms - Enhanced HF Datasets integration ### Test Files 4. **`tests/test_training_fix.py`** - Created comprehensive test suite - Tests imports, config loading, monitoring setup, trainer creation - Validates format string fixes ## Testing the Fixes Run the test suite to verify all fixes work: ```bash python tests/test_training_fix.py ``` Expected output: ``` 🚀 Testing SmolLM3 Training Pipeline Fixes ================================================== 🔍 Testing imports... ✅ config.py imported successfully ✅ model.py imported successfully ✅ data.py imported successfully ✅ trainer.py imported successfully ✅ monitoring.py imported successfully 🔍 Testing configuration loading... ✅ Configuration loaded successfully Model: HuggingFaceTB/SmolLM3-3B Dataset: legmlai/openhermes-fr Batch size: 16 Learning rate: 8e-06 🔍 Testing monitoring setup... ✅ Monitoring setup successful Experiment: test_experiment Tracking enabled: False HF Dataset: tonic/trackio-experiments 🔍 Testing trainer creation... ✅ Model created successfully ✅ Dataset created successfully ✅ Trainer created successfully 🔍 Testing format string fix... ✅ Format string fix works correctly 📊 Test Results: 5/5 tests passed ✅ All tests passed! The training pipeline should work correctly. ``` ## Running the Training Pipeline The training pipeline should now work correctly with the H100 lightweight configuration: ```bash # Run the interactive pipeline ./launch.sh # Or run training directly python src/train.py config/train_smollm3_h100_lightweight.py \ --experiment-name "smollm3_test" \ --trackio-url "https://your-space.hf.space" \ --output-dir /output-checkpoint ``` ## Key Improvements 1. **Robust Error Handling**: Training continues even if monitoring components fail 2. **Better Logging**: More informative error messages and status updates 3. **Graceful Degradation**: HF Datasets integration works even without Trackio Space 4. **Type Safety**: Proper type checking prevents format string errors 5. **Comprehensive Testing**: Test suite validates all components work correctly ## Next Steps 1. **Deploy Trackio Space**: If you want full monitoring, deploy the Trackio Space manually 2. **Test Training**: Run a short training session to verify everything works 3. **Monitor Progress**: Check HF Datasets for experiment data even if Trackio Space is unavailable The training pipeline should now work reliably for your end-to-end fine-tuning experiments!