Spaces:
Paused
Paused
Update train.py
Browse files
train.py
CHANGED
|
@@ -1,121 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
|
| 3 |
import datasets
|
| 4 |
from datasets import Dataset
|
| 5 |
-
from typing import cast
|
| 6 |
-
import os
|
| 7 |
-
import shutil
|
| 8 |
-
import multiprocessing as mp
|
| 9 |
from PIL import Image
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
def load_model(model_name, device_id=0):
|
| 13 |
bnb_config = BitsAndBytesConfig(
|
| 14 |
load_in_4bit=True,
|
| 15 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 16 |
bnb_4bit_quant_type="nf4",
|
| 17 |
-
bnb_4bit_use_double_quant=
|
| 18 |
)
|
| 19 |
|
| 20 |
processor = AutoProcessor.from_pretrained(model_name)
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
model = AutoModelForImageTextToText.from_pretrained(
|
| 24 |
model_name,
|
| 25 |
quantization_config=bnb_config,
|
| 26 |
dtype=torch.bfloat16,
|
| 27 |
-
device_map={"":
|
| 28 |
attn_implementation="flash_attention_2",
|
| 29 |
)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return processor, model
|
| 32 |
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
pil_images = []
|
| 38 |
-
for
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"role": "user",
|
| 47 |
-
"content": [
|
| 48 |
-
{"type": "image"},
|
| 49 |
-
{
|
| 50 |
-
"type": "text",
|
| 51 |
-
"text": "Describe the image concisely, and skip mentioning that it's illustrated or from anime.",
|
| 52 |
-
},
|
| 53 |
-
],
|
| 54 |
-
}
|
| 55 |
-
]
|
| 56 |
-
|
| 57 |
-
text = processor.apply_chat_template(
|
| 58 |
-
msg, add_generation_prompt=True, tokenize=False
|
| 59 |
-
)
|
| 60 |
-
texts = [text] * len(pil_images)
|
| 61 |
|
|
|
|
| 62 |
inputs = processor(text=texts, images=pil_images, return_tensors="pt", padding=True)
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
-
with
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
generated = model.generate(
|
| 68 |
**inputs,
|
| 69 |
max_new_tokens=128,
|
| 70 |
do_sample=False,
|
|
|
|
| 71 |
)
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
captions = []
|
| 76 |
-
special_tokens = set(processor.tokenizer.all_special_tokens)
|
| 77 |
-
for d in decoded:
|
| 78 |
-
if "<|im_start|>assistant" in d:
|
| 79 |
-
d = d.split("<|im_start|>assistant")[-1]
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
|
| 84 |
-
d = d.strip()
|
| 85 |
-
captions.append(d)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
def process_shard(gpu_id, start, end, model_name, batch_size, input_dataset, output_file):
|
| 93 |
try:
|
| 94 |
-
torch.cuda.set_device(gpu_id)
|
| 95 |
-
|
| 96 |
print(f"[GPU {gpu_id}] Loading model...", flush=True)
|
| 97 |
-
processor, model =
|
| 98 |
|
| 99 |
-
print(f"[GPU {gpu_id}] Loading
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
| 103 |
-
shard = cast(Dataset, loaded["train"])
|
| 104 |
-
else:
|
| 105 |
-
shard = cast(Dataset, loaded)
|
| 106 |
|
| 107 |
-
|
| 108 |
result = shard.map(
|
| 109 |
-
lambda batch:
|
| 110 |
batched=True,
|
| 111 |
-
batch_size=
|
| 112 |
-
remove_columns=[col for col in shard.column_names if col
|
|
|
|
| 113 |
)
|
| 114 |
|
| 115 |
-
print(f"[GPU {gpu_id}] Saving results to {output_file}...", flush=True)
|
|
|
|
|
|
|
| 116 |
result.save_to_disk(output_file)
|
| 117 |
|
| 118 |
-
print(f"[GPU {gpu_id}] Done
|
| 119 |
return output_file
|
| 120 |
except Exception as e:
|
| 121 |
print(f"[GPU {gpu_id}] Error: {e}", flush=True)
|
|
@@ -123,72 +208,89 @@ def process_shard(gpu_id, start, end, model_name, batch_size, input_dataset, out
|
|
| 123 |
|
| 124 |
|
| 125 |
def main():
|
| 126 |
-
mp.set_start_method(
|
| 127 |
-
|
| 128 |
-
input_dataset = "none-yet/anime-captions"
|
| 129 |
-
output_dataset = "nroggendorff/anime-captions"
|
| 130 |
-
model_name = "datalab-to/chandra"
|
| 131 |
-
batch_size = 16
|
| 132 |
-
|
| 133 |
-
print("Loading dataset info...")
|
| 134 |
-
loaded = datasets.load_dataset(input_dataset, split="train")
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
else:
|
| 139 |
-
|
| 140 |
|
| 141 |
-
|
|
|
|
| 142 |
total_size = len(ds)
|
|
|
|
|
|
|
|
|
|
| 143 |
shard_size = total_size // num_gpus
|
| 144 |
|
| 145 |
-
print(f"Dataset size: {total_size}")
|
| 146 |
-
print(f"Using {num_gpus} GPUs")
|
| 147 |
-
print(f"Shard size: {shard_size}")
|
| 148 |
|
|
|
|
| 149 |
processes = []
|
| 150 |
-
|
| 151 |
-
|
| 152 |
for i in range(num_gpus):
|
| 153 |
start = i * shard_size
|
| 154 |
end = start + shard_size if i < num_gpus - 1 else total_size
|
| 155 |
-
|
| 156 |
-
|
| 157 |
|
| 158 |
p = mp.Process(
|
| 159 |
target=process_shard,
|
| 160 |
-
args=(i, start, end,
|
|
|
|
| 161 |
)
|
| 162 |
p.start()
|
| 163 |
processes.append(p)
|
| 164 |
|
|
|
|
| 165 |
for p in processes:
|
| 166 |
p.join()
|
| 167 |
if p.exitcode != 0:
|
| 168 |
-
print(f"
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
shards = [cast(Dataset, datasets.load_from_disk(f)) for f in temp_files]
|
| 180 |
final_ds = datasets.concatenate_datasets(shards)
|
| 181 |
|
| 182 |
-
print(f"Final dataset size: {len(final_ds)}")
|
| 183 |
-
|
| 184 |
-
final_ds.push_to_hub(output_dataset, create_pr=False)
|
| 185 |
|
| 186 |
-
print("Cleaning up temporary files...")
|
| 187 |
-
for
|
| 188 |
-
if os.path.exists(
|
| 189 |
-
shutil.rmtree(
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
print("Done
|
| 192 |
|
| 193 |
|
| 194 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# caption_pipeline_fast.py
|
| 2 |
+
import os
|
| 3 |
+
import shutil
|
| 4 |
+
import io
|
| 5 |
+
import multiprocessing as mp
|
| 6 |
+
from typing import Tuple, Dict, Any
|
| 7 |
+
|
| 8 |
import torch
|
| 9 |
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
|
| 10 |
import datasets
|
| 11 |
from datasets import Dataset
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
|
| 14 |
+
# -------------------------
|
| 15 |
+
# CONFIG
|
| 16 |
+
# -------------------------
|
| 17 |
+
INPUT_DATASET = "none-yet/anime-captions" # original dataset id / path
|
| 18 |
+
PREPROCESSED_DIR = "preprocessed_ds" # temporary preprocessed dataset on disk
|
| 19 |
+
TEMP_SHARD_PREFIX = "temp_shard_" # per-GPU result dirs
|
| 20 |
+
OUTPUT_DATASET = "nroggendorff/anime-captions"
|
| 21 |
+
MODEL_NAME = "datalab-to/chandra"
|
| 22 |
+
BATCH_SIZE = 32 # try 32 or 64 depending on VRAM
|
| 23 |
+
PREPROCESS_NUM_PROC = max(1, mp.cpu_count() - 2)
|
| 24 |
+
DEVICE_BATCH_PREPIN = True # pin memory before to(device)
|
| 25 |
+
USE_BETTERTRANSFORMER = True # try BetterTransformer if installed
|
| 26 |
+
# -------------------------
|
| 27 |
+
|
| 28 |
+
def preprocess_example(example: Dict[str, Any]) -> Dict[str, Any]:
|
| 29 |
+
"""
|
| 30 |
+
Convert image to RGB bytes and store the prompt string once per example.
|
| 31 |
+
This is run in main process (once).
|
| 32 |
+
"""
|
| 33 |
+
img = example["image"]
|
| 34 |
+
if not isinstance(img, Image.Image):
|
| 35 |
+
# datasets Image feature may already give PIL or path - handle both
|
| 36 |
+
try:
|
| 37 |
+
img = Image.open(io.BytesIO(img)) # if raw bytes
|
| 38 |
+
except Exception:
|
| 39 |
+
# fall back to the feature handling
|
| 40 |
+
img = img.convert("RGB")
|
| 41 |
+
if img.mode != "RGB":
|
| 42 |
+
img = img.convert("RGB")
|
| 43 |
+
|
| 44 |
+
bio = io.BytesIO()
|
| 45 |
+
img.save(bio, format="PNG") # PNG keeps quality and is easy to decode later
|
| 46 |
+
example["image_bytes"] = bio.getvalue()
|
| 47 |
+
|
| 48 |
+
# keep the original image field for compatibility if you want
|
| 49 |
+
# but we'll use image_bytes in workers
|
| 50 |
+
return example
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def prepare_and_save_dataset(input_dataset: str, processor_chat_prompt: str) -> None:
|
| 54 |
+
"""
|
| 55 |
+
Loads dataset once, preprocesses images to bytes, writes a
|
| 56 |
+
new field 'image_bytes' and saves to PREPROCESSED_DIR.
|
| 57 |
+
"""
|
| 58 |
+
print("[main] Loading dataset for preprocessing...")
|
| 59 |
+
loaded = datasets.load_dataset(input_dataset, split="train")
|
| 60 |
+
ds = loaded if not isinstance(loaded, datasets.DatasetDict) else loaded["train"]
|
| 61 |
+
|
| 62 |
+
# Remove any columns we don't need (keep image) to save space
|
| 63 |
+
# But keep other metadata if needed
|
| 64 |
+
cols_to_remove = [c for c in ds.column_names if c not in ("image",)]
|
| 65 |
+
if cols_to_remove:
|
| 66 |
+
ds = ds.remove_columns(cols_to_remove)
|
| 67 |
+
|
| 68 |
+
print(f"[main] Preprocessing images to bytes with {PREPROCESS_NUM_PROC} procs...")
|
| 69 |
+
ds = ds.map(preprocess_example, remove_columns=[], num_proc=PREPROCESS_NUM_PROC)
|
| 70 |
+
|
| 71 |
+
# store the constant chat template string in dataset (small redundancy) to avoid recomputing
|
| 72 |
+
print("[main] Storing prompt string per example (small overhead)...")
|
| 73 |
+
ds = ds.add_column("prompt", [processor_chat_prompt] * len(ds))
|
| 74 |
+
|
| 75 |
+
# save to disk for fast worker access (preprocessed once)
|
| 76 |
+
if os.path.exists(PREPROCESSED_DIR):
|
| 77 |
+
shutil.rmtree(PREPROCESSED_DIR)
|
| 78 |
+
print(f"[main] Saving preprocessed dataset to {PREPROCESSED_DIR} ...")
|
| 79 |
+
ds.save_to_disk(PREPROCESSED_DIR)
|
| 80 |
+
print("[main] Preprocessing complete.")
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def load_model_for_gpu(model_name: str, gpu_id: int):
|
| 84 |
+
"""
|
| 85 |
+
Load model + processor on the target GPU with 4-bit config (like your original)
|
| 86 |
+
"""
|
| 87 |
+
torch.cuda.set_device(gpu_id)
|
| 88 |
|
|
|
|
| 89 |
bnb_config = BitsAndBytesConfig(
|
| 90 |
load_in_4bit=True,
|
| 91 |
bnb_4bit_compute_dtype=torch.bfloat16,
|
| 92 |
bnb_4bit_quant_type="nf4",
|
| 93 |
+
bnb_4bit_use_double_quant=True,
|
| 94 |
)
|
| 95 |
|
| 96 |
processor = AutoProcessor.from_pretrained(model_name)
|
| 97 |
+
# keep left padding as you had
|
| 98 |
+
try:
|
| 99 |
+
processor.tokenizer.padding_side = "left"
|
| 100 |
+
except Exception:
|
| 101 |
+
pass
|
| 102 |
|
| 103 |
model = AutoModelForImageTextToText.from_pretrained(
|
| 104 |
model_name,
|
| 105 |
quantization_config=bnb_config,
|
| 106 |
dtype=torch.bfloat16,
|
| 107 |
+
device_map={"": gpu_id},
|
| 108 |
attn_implementation="flash_attention_2",
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Try BetterTransformer if available
|
| 112 |
+
if USE_BETTERTRANSFORMER:
|
| 113 |
+
try:
|
| 114 |
+
from optimum.bettertransformer import BetterTransformer
|
| 115 |
+
model = BetterTransformer.transform(model)
|
| 116 |
+
print(f"[GPU {gpu_id}] Applied BetterTransformer.")
|
| 117 |
+
except Exception:
|
| 118 |
+
# not fatal
|
| 119 |
+
print(f"[GPU {gpu_id}] BetterTransformer unavailable or failed; continuing.")
|
| 120 |
+
|
| 121 |
+
model.eval()
|
| 122 |
return processor, model
|
| 123 |
|
| 124 |
|
| 125 |
+
def caption_batch_from_bytes(batch: Dict[str, Any], processor, model) -> Dict[str, Any]:
|
| 126 |
+
"""
|
| 127 |
+
Given a batch from the preprocessed dataset (contains 'image_bytes' and 'prompt'),
|
| 128 |
+
reconstruct PIL images, call processor, run generate, decode, and return texts.
|
| 129 |
+
"""
|
| 130 |
+
image_bytes_list = batch["image_bytes"]
|
| 131 |
+
prompts = batch["prompt"]
|
| 132 |
+
assert len(image_bytes_list) == len(prompts)
|
| 133 |
|
| 134 |
pil_images = []
|
| 135 |
+
for b in image_bytes_list:
|
| 136 |
+
img = Image.open(io.BytesIO(b))
|
| 137 |
+
if img.mode != "RGB":
|
| 138 |
+
img = img.convert("RGB")
|
| 139 |
+
pil_images.append(img)
|
| 140 |
|
| 141 |
+
# processor.apply_chat_template was already run on main, so prompts are ready strings
|
| 142 |
+
texts = list(prompts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# Build inputs. This step will perform tokenizer + image feature extraction.
|
| 145 |
inputs = processor(text=texts, images=pil_images, return_tensors="pt", padding=True)
|
| 146 |
|
| 147 |
+
# Pin memory for faster host->device copy if enabled
|
| 148 |
+
if DEVICE_BATCH_PREPIN:
|
| 149 |
+
for k, v in inputs.items():
|
| 150 |
+
if torch.is_tensor(v):
|
| 151 |
+
inputs[k] = v.pin_memory()
|
| 152 |
|
| 153 |
+
# Move to device with non_blocking transfer (works with pinned memory)
|
| 154 |
+
device = model.device
|
| 155 |
+
inputs = {k: (v.to(device, non_blocking=True) if torch.is_tensor(v) else v) for k, v in inputs.items()}
|
| 156 |
+
|
| 157 |
+
with torch.no_grad(), torch.amp.autocast(device_type="cuda", dtype=torch.bfloat16):
|
| 158 |
generated = model.generate(
|
| 159 |
**inputs,
|
| 160 |
max_new_tokens=128,
|
| 161 |
do_sample=False,
|
| 162 |
+
num_beams=1,
|
| 163 |
)
|
| 164 |
|
| 165 |
+
# decode skipping special tokens to avoid expensive post-processing
|
| 166 |
+
decoded = processor.batch_decode(generated, skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
+
# clean and return
|
| 169 |
+
return {"text": [d.strip() for d in decoded]}
|
| 170 |
|
|
|
|
|
|
|
| 171 |
|
| 172 |
+
def process_shard(gpu_id: int, start: int, end: int, output_file: str):
|
| 173 |
+
"""
|
| 174 |
+
Worker process: loads the preprocessed dataset shard, loads the model on the GPU,
|
| 175 |
+
runs batched generation and saves the results to disk.
|
| 176 |
+
"""
|
|
|
|
| 177 |
try:
|
|
|
|
|
|
|
| 178 |
print(f"[GPU {gpu_id}] Loading model...", flush=True)
|
| 179 |
+
processor, model = load_model_for_gpu(MODEL_NAME, gpu_id)
|
| 180 |
|
| 181 |
+
print(f"[GPU {gpu_id}] Loading preprocessed dataset from disk...", flush=True)
|
| 182 |
+
ds = datasets.load_from_disk(PREPROCESSED_DIR)
|
| 183 |
+
# slice with select for a true copy
|
| 184 |
+
indices = list(range(start, end))
|
| 185 |
+
shard = ds.select(indices)
|
| 186 |
|
| 187 |
+
print(f"[GPU {gpu_id}] Processing {len(shard)} examples (shard indices {start}:{end}) ...", flush=True)
|
|
|
|
|
|
|
|
|
|
| 188 |
|
| 189 |
+
# map with batched generator function (uses our caption_batch_from_bytes)
|
| 190 |
result = shard.map(
|
| 191 |
+
lambda batch: caption_batch_from_bytes(batch, processor, model),
|
| 192 |
batched=True,
|
| 193 |
+
batch_size=BATCH_SIZE,
|
| 194 |
+
remove_columns=[col for col in shard.column_names if col not in ("image_bytes", "prompt")],
|
| 195 |
+
num_proc=1, # model inference must run in the GPU process (no multiproc here)
|
| 196 |
)
|
| 197 |
|
| 198 |
+
print(f"[GPU {gpu_id}] Saving results to {output_file} ...", flush=True)
|
| 199 |
+
if os.path.exists(output_file):
|
| 200 |
+
shutil.rmtree(output_file)
|
| 201 |
result.save_to_disk(output_file)
|
| 202 |
|
| 203 |
+
print(f"[GPU {gpu_id}] Done.", flush=True)
|
| 204 |
return output_file
|
| 205 |
except Exception as e:
|
| 206 |
print(f"[GPU {gpu_id}] Error: {e}", flush=True)
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
def main():
|
| 211 |
+
mp.set_start_method("spawn", force=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 212 |
|
| 213 |
+
# 1) Load processor temporarily to build the chat prompt once
|
| 214 |
+
print("[main] Loading processor to create chat prompt...")
|
| 215 |
+
tmp_proc = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 216 |
+
chat_msg = [
|
| 217 |
+
{
|
| 218 |
+
"role": "user",
|
| 219 |
+
"content": [
|
| 220 |
+
{"type": "image"},
|
| 221 |
+
{
|
| 222 |
+
"type": "text",
|
| 223 |
+
"text": "Describe the image concisely, and skip mentioning that it's illustrated or from anime.",
|
| 224 |
+
},
|
| 225 |
+
],
|
| 226 |
+
}
|
| 227 |
+
]
|
| 228 |
+
# keep tokenize=False so we store the raw prompt and let processor tokenize in workers with padding semantics
|
| 229 |
+
prompt_str = tmp_proc.apply_chat_template(chat_msg, add_generation_prompt=True, tokenize=False)
|
| 230 |
+
del tmp_proc
|
| 231 |
+
|
| 232 |
+
# 2) Preprocess dataset once (images -> bytes, add prompt column)
|
| 233 |
+
if not os.path.exists(PREPROCESSED_DIR):
|
| 234 |
+
prepare_and_save_dataset(INPUT_DATASET, prompt_str)
|
| 235 |
else:
|
| 236 |
+
print(f"[main] Preprocessed dataset found at {PREPROCESSED_DIR}, skipping preprocess.")
|
| 237 |
|
| 238 |
+
# 3) Load the preprocessed dataset to compute shard indices
|
| 239 |
+
ds = datasets.load_from_disk(PREPROCESSED_DIR)
|
| 240 |
total_size = len(ds)
|
| 241 |
+
num_gpus = torch.cuda.device_count()
|
| 242 |
+
if num_gpus == 0:
|
| 243 |
+
raise RuntimeError("No GPUs found. This script requires GPUs.")
|
| 244 |
shard_size = total_size // num_gpus
|
| 245 |
|
| 246 |
+
print(f"[main] Dataset size: {total_size}")
|
| 247 |
+
print(f"[main] Using {num_gpus} GPUs (shard size {shard_size})")
|
|
|
|
| 248 |
|
| 249 |
+
# 4) Spawn worker processes
|
| 250 |
processes = []
|
| 251 |
+
temp_dirs = []
|
|
|
|
| 252 |
for i in range(num_gpus):
|
| 253 |
start = i * shard_size
|
| 254 |
end = start + shard_size if i < num_gpus - 1 else total_size
|
| 255 |
+
out_dir = f"{TEMP_SHARD_PREFIX}{i}"
|
| 256 |
+
temp_dirs.append(out_dir)
|
| 257 |
|
| 258 |
p = mp.Process(
|
| 259 |
target=process_shard,
|
| 260 |
+
args=(i, start, end, out_dir),
|
| 261 |
+
daemon=False,
|
| 262 |
)
|
| 263 |
p.start()
|
| 264 |
processes.append(p)
|
| 265 |
|
| 266 |
+
# 5) wait for processes
|
| 267 |
for p in processes:
|
| 268 |
p.join()
|
| 269 |
if p.exitcode != 0:
|
| 270 |
+
print(f"[main] Process {p.pid} failed with exit code {p.exitcode}. Terminating others.", flush=True)
|
| 271 |
+
for q in processes:
|
| 272 |
+
if q.is_alive():
|
| 273 |
+
q.terminate()
|
| 274 |
+
for q in processes:
|
| 275 |
+
q.join()
|
| 276 |
+
raise RuntimeError("At least one GPU worker failed.")
|
| 277 |
+
|
| 278 |
+
print("[main] All workers finished. Concatenating shards...")
|
| 279 |
+
|
| 280 |
+
shards = [datasets.load_from_disk(d) for d in temp_dirs]
|
|
|
|
| 281 |
final_ds = datasets.concatenate_datasets(shards)
|
| 282 |
|
| 283 |
+
print(f"[main] Final dataset size: {len(final_ds)}. Pushing to hub as {OUTPUT_DATASET} ...")
|
| 284 |
+
final_ds.push_to_hub(OUTPUT_DATASET, create_pr=False)
|
|
|
|
| 285 |
|
| 286 |
+
print("[main] Cleaning up temporary files...")
|
| 287 |
+
for d in temp_dirs:
|
| 288 |
+
if os.path.exists(d):
|
| 289 |
+
shutil.rmtree(d)
|
| 290 |
+
# optionally keep PREPROCESSED_DIR for re-runs; comment out removal if you want to keep it
|
| 291 |
+
# shutil.rmtree(PREPROCESSED_DIR)
|
| 292 |
|
| 293 |
+
print("[main] Done.")
|
| 294 |
|
| 295 |
|
| 296 |
if __name__ == "__main__":
|