Spaces:
Runtime error
Runtime error
extractive
Browse files
extractive_summarizer/bert_parent.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Union
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import streamlit as st
|
| 5 |
+
import numpy as np
|
| 6 |
+
from numpy import ndarray
|
| 7 |
+
from transformers import (AlbertModel, AlbertTokenizer, BertModel,
|
| 8 |
+
BertTokenizer, DistilBertModel, DistilBertTokenizer,
|
| 9 |
+
PreTrainedModel, PreTrainedTokenizer, XLMModel,
|
| 10 |
+
XLMTokenizer, XLNetModel, XLNetTokenizer)
|
| 11 |
+
|
| 12 |
+
@st.cache()
|
| 13 |
+
def load_hf_model(base_model, model_name, device):
|
| 14 |
+
model = base_model.from_pretrained(model_name, output_hidden_states=True).to(device)
|
| 15 |
+
return model
|
| 16 |
+
|
| 17 |
+
class BertParent(object):
|
| 18 |
+
"""
|
| 19 |
+
Base handler for BERT models.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
MODELS = {
|
| 23 |
+
'bert-base-uncased': (BertModel, BertTokenizer),
|
| 24 |
+
'bert-large-uncased': (BertModel, BertTokenizer),
|
| 25 |
+
'xlnet-base-cased': (XLNetModel, XLNetTokenizer),
|
| 26 |
+
'xlm-mlm-enfr-1024': (XLMModel, XLMTokenizer),
|
| 27 |
+
'distilbert-base-uncased': (DistilBertModel, DistilBertTokenizer),
|
| 28 |
+
'albert-base-v1': (AlbertModel, AlbertTokenizer),
|
| 29 |
+
'albert-large-v1': (AlbertModel, AlbertTokenizer)
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
model: str,
|
| 35 |
+
custom_model: PreTrainedModel = None,
|
| 36 |
+
custom_tokenizer: PreTrainedTokenizer = None,
|
| 37 |
+
gpu_id: int = 0,
|
| 38 |
+
):
|
| 39 |
+
"""
|
| 40 |
+
:param model: Model is the string path for the bert weights. If given a keyword, the s3 path will be used.
|
| 41 |
+
:param custom_model: This is optional if a custom bert model is used.
|
| 42 |
+
:param custom_tokenizer: Place to use custom tokenizer.
|
| 43 |
+
"""
|
| 44 |
+
base_model, base_tokenizer = self.MODELS.get(model, (None, None))
|
| 45 |
+
|
| 46 |
+
self.device = torch.device("cpu")
|
| 47 |
+
if torch.cuda.is_available():
|
| 48 |
+
assert (
|
| 49 |
+
isinstance(gpu_id, int) and (0 <= gpu_id and gpu_id < torch.cuda.device_count())
|
| 50 |
+
), f"`gpu_id` must be an integer between 0 to {torch.cuda.device_count() - 1}. But got: {gpu_id}"
|
| 51 |
+
|
| 52 |
+
self.device = torch.device(f"cuda:{gpu_id}")
|
| 53 |
+
|
| 54 |
+
if custom_model:
|
| 55 |
+
self.model = custom_model.to(self.device)
|
| 56 |
+
else:
|
| 57 |
+
# self.model = base_model.from_pretrained(
|
| 58 |
+
# model, output_hidden_states=True).to(self.device)
|
| 59 |
+
self.model = load_hf_model(base_model, model, self.device)
|
| 60 |
+
|
| 61 |
+
if custom_tokenizer:
|
| 62 |
+
self.tokenizer = custom_tokenizer
|
| 63 |
+
else:
|
| 64 |
+
self.tokenizer = base_tokenizer.from_pretrained(model)
|
| 65 |
+
|
| 66 |
+
self.model.eval()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def tokenize_input(self, text: str) -> torch.tensor:
|
| 70 |
+
"""
|
| 71 |
+
Tokenizes the text input.
|
| 72 |
+
:param text: Text to tokenize.
|
| 73 |
+
:return: Returns a torch tensor.
|
| 74 |
+
"""
|
| 75 |
+
tokenized_text = self.tokenizer.tokenize(text)
|
| 76 |
+
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
|
| 77 |
+
return torch.tensor([indexed_tokens]).to(self.device)
|
| 78 |
+
|
| 79 |
+
def _pooled_handler(self, hidden: torch.Tensor,
|
| 80 |
+
reduce_option: str) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
Handles torch tensor.
|
| 83 |
+
:param hidden: The hidden torch tensor to process.
|
| 84 |
+
:param reduce_option: The reduce option to use, such as mean, etc.
|
| 85 |
+
:return: Returns a torch tensor.
|
| 86 |
+
"""
|
| 87 |
+
|
| 88 |
+
if reduce_option == 'max':
|
| 89 |
+
return hidden.max(dim=1)[0].squeeze()
|
| 90 |
+
|
| 91 |
+
elif reduce_option == 'median':
|
| 92 |
+
return hidden.median(dim=1)[0].squeeze()
|
| 93 |
+
|
| 94 |
+
return hidden.mean(dim=1).squeeze()
|
| 95 |
+
|
| 96 |
+
def extract_embeddings(
|
| 97 |
+
self,
|
| 98 |
+
text: str,
|
| 99 |
+
hidden: Union[List[int], int] = -2,
|
| 100 |
+
reduce_option: str = 'mean',
|
| 101 |
+
hidden_concat: bool = False,
|
| 102 |
+
) -> torch.Tensor:
|
| 103 |
+
"""
|
| 104 |
+
Extracts the embeddings for the given text.
|
| 105 |
+
:param text: The text to extract embeddings for.
|
| 106 |
+
:param hidden: The hidden layer(s) to use for a readout handler.
|
| 107 |
+
:param squeeze: If we should squeeze the outputs (required for some layers).
|
| 108 |
+
:param reduce_option: How we should reduce the items.
|
| 109 |
+
:param hidden_concat: Whether or not to concat multiple hidden layers.
|
| 110 |
+
:return: A torch vector.
|
| 111 |
+
"""
|
| 112 |
+
tokens_tensor = self.tokenize_input(text)
|
| 113 |
+
pooled, hidden_states = self.model(tokens_tensor)[-2:]
|
| 114 |
+
|
| 115 |
+
# deprecated temporary keyword functions.
|
| 116 |
+
if reduce_option == 'concat_last_4':
|
| 117 |
+
last_4 = [hidden_states[i] for i in (-1, -2, -3, -4)]
|
| 118 |
+
cat_hidden_states = torch.cat(tuple(last_4), dim=-1)
|
| 119 |
+
return torch.mean(cat_hidden_states, dim=1).squeeze()
|
| 120 |
+
|
| 121 |
+
elif reduce_option == 'reduce_last_4':
|
| 122 |
+
last_4 = [hidden_states[i] for i in (-1, -2, -3, -4)]
|
| 123 |
+
return torch.cat(tuple(last_4), dim=1).mean(axis=1).squeeze()
|
| 124 |
+
|
| 125 |
+
elif type(hidden) == int:
|
| 126 |
+
hidden_s = hidden_states[hidden]
|
| 127 |
+
return self._pooled_handler(hidden_s, reduce_option)
|
| 128 |
+
|
| 129 |
+
elif hidden_concat:
|
| 130 |
+
last_states = [hidden_states[i] for i in hidden]
|
| 131 |
+
cat_hidden_states = torch.cat(tuple(last_states), dim=-1)
|
| 132 |
+
return torch.mean(cat_hidden_states, dim=1).squeeze()
|
| 133 |
+
|
| 134 |
+
last_states = [hidden_states[i] for i in hidden]
|
| 135 |
+
hidden_s = torch.cat(tuple(last_states), dim=1)
|
| 136 |
+
|
| 137 |
+
return self._pooled_handler(hidden_s, reduce_option)
|
| 138 |
+
|
| 139 |
+
def create_matrix(
|
| 140 |
+
self,
|
| 141 |
+
content: List[str],
|
| 142 |
+
hidden: Union[List[int], int] = -2,
|
| 143 |
+
reduce_option: str = 'mean',
|
| 144 |
+
hidden_concat: bool = False,
|
| 145 |
+
) -> ndarray:
|
| 146 |
+
"""
|
| 147 |
+
Create matrix from the embeddings.
|
| 148 |
+
:param content: The list of sentences.
|
| 149 |
+
:param hidden: Which hidden layer to use.
|
| 150 |
+
:param reduce_option: The reduce option to run.
|
| 151 |
+
:param hidden_concat: Whether or not to concat multiple hidden layers.
|
| 152 |
+
:return: A numpy array matrix of the given content.
|
| 153 |
+
"""
|
| 154 |
+
|
| 155 |
+
return np.asarray([
|
| 156 |
+
np.squeeze(self.extract_embeddings(
|
| 157 |
+
t, hidden=hidden, reduce_option=reduce_option, hidden_concat=hidden_concat
|
| 158 |
+
).data.cpu().numpy()) for t in content
|
| 159 |
+
])
|
| 160 |
+
|
| 161 |
+
def __call__(
|
| 162 |
+
self,
|
| 163 |
+
content: List[str],
|
| 164 |
+
hidden: int = -2,
|
| 165 |
+
reduce_option: str = 'mean',
|
| 166 |
+
hidden_concat: bool = False,
|
| 167 |
+
) -> ndarray:
|
| 168 |
+
"""
|
| 169 |
+
Create matrix from the embeddings.
|
| 170 |
+
:param content: The list of sentences.
|
| 171 |
+
:param hidden: Which hidden layer to use.
|
| 172 |
+
:param reduce_option: The reduce option to run.
|
| 173 |
+
:param hidden_concat: Whether or not to concat multiple hidden layers.
|
| 174 |
+
:return: A numpy array matrix of the given content.
|
| 175 |
+
"""
|
| 176 |
+
return self.create_matrix(content, hidden, reduce_option, hidden_concat)
|
extractive_summarizer/cluster_features.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from numpy import ndarray
|
| 5 |
+
from sklearn.cluster import KMeans
|
| 6 |
+
from sklearn.decomposition import PCA
|
| 7 |
+
from sklearn.mixture import GaussianMixture
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class ClusterFeatures(object):
|
| 11 |
+
"""
|
| 12 |
+
Basic handling of clustering features.
|
| 13 |
+
"""
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
features: ndarray,
|
| 18 |
+
algorithm: str = 'kmeans',
|
| 19 |
+
pca_k: int = None,
|
| 20 |
+
random_state: int = 12345,
|
| 21 |
+
):
|
| 22 |
+
"""
|
| 23 |
+
:param features: the embedding matrix created by bert parent.
|
| 24 |
+
:param algorithm: Which clustering algorithm to use.
|
| 25 |
+
:param pca_k: If you want the features to be ran through pca, this is the components number.
|
| 26 |
+
:param random_state: Random state.
|
| 27 |
+
"""
|
| 28 |
+
if pca_k:
|
| 29 |
+
self.features = PCA(n_components=pca_k).fit_transform(features)
|
| 30 |
+
else:
|
| 31 |
+
self.features = features
|
| 32 |
+
|
| 33 |
+
self.algorithm = algorithm
|
| 34 |
+
self.pca_k = pca_k
|
| 35 |
+
self.random_state = random_state
|
| 36 |
+
|
| 37 |
+
def __get_model(self, k: int):
|
| 38 |
+
"""
|
| 39 |
+
Retrieve clustering model.
|
| 40 |
+
|
| 41 |
+
:param k: amount of clusters.
|
| 42 |
+
:return: Clustering model.
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
+
if self.algorithm == 'gmm':
|
| 46 |
+
return GaussianMixture(n_components=k, random_state=self.random_state)
|
| 47 |
+
return KMeans(n_clusters=k, random_state=self.random_state)
|
| 48 |
+
|
| 49 |
+
def __get_centroids(self, model):
|
| 50 |
+
"""
|
| 51 |
+
Retrieve centroids of model.
|
| 52 |
+
|
| 53 |
+
:param model: Clustering model.
|
| 54 |
+
:return: Centroids.
|
| 55 |
+
"""
|
| 56 |
+
if self.algorithm == 'gmm':
|
| 57 |
+
return model.means_
|
| 58 |
+
return model.cluster_centers_
|
| 59 |
+
|
| 60 |
+
def __find_closest_args(self, centroids: np.ndarray) -> Dict:
|
| 61 |
+
"""
|
| 62 |
+
Find the closest arguments to centroid.
|
| 63 |
+
|
| 64 |
+
:param centroids: Centroids to find closest.
|
| 65 |
+
:return: Closest arguments.
|
| 66 |
+
"""
|
| 67 |
+
centroid_min = 1e10
|
| 68 |
+
cur_arg = -1
|
| 69 |
+
args = {}
|
| 70 |
+
used_idx = []
|
| 71 |
+
|
| 72 |
+
for j, centroid in enumerate(centroids):
|
| 73 |
+
|
| 74 |
+
for i, feature in enumerate(self.features):
|
| 75 |
+
value = np.linalg.norm(feature - centroid)
|
| 76 |
+
|
| 77 |
+
if value < centroid_min and i not in used_idx:
|
| 78 |
+
cur_arg = i
|
| 79 |
+
centroid_min = value
|
| 80 |
+
|
| 81 |
+
used_idx.append(cur_arg)
|
| 82 |
+
args[j] = cur_arg
|
| 83 |
+
centroid_min = 1e10
|
| 84 |
+
cur_arg = -1
|
| 85 |
+
|
| 86 |
+
return args
|
| 87 |
+
|
| 88 |
+
def calculate_elbow(self, k_max: int) -> List[float]:
|
| 89 |
+
"""
|
| 90 |
+
Calculates elbow up to the provided k_max.
|
| 91 |
+
|
| 92 |
+
:param k_max: K_max to calculate elbow for.
|
| 93 |
+
:return: The inertias up to k_max.
|
| 94 |
+
"""
|
| 95 |
+
inertias = []
|
| 96 |
+
|
| 97 |
+
for k in range(1, min(k_max, len(self.features))):
|
| 98 |
+
model = self.__get_model(k).fit(self.features)
|
| 99 |
+
|
| 100 |
+
inertias.append(model.inertia_)
|
| 101 |
+
|
| 102 |
+
return inertias
|
| 103 |
+
|
| 104 |
+
def calculate_optimal_cluster(self, k_max: int):
|
| 105 |
+
"""
|
| 106 |
+
Calculates the optimal cluster based on Elbow.
|
| 107 |
+
|
| 108 |
+
:param k_max: The max k to search elbow for.
|
| 109 |
+
:return: The optimal cluster size.
|
| 110 |
+
"""
|
| 111 |
+
delta_1 = []
|
| 112 |
+
delta_2 = []
|
| 113 |
+
|
| 114 |
+
max_strength = 0
|
| 115 |
+
k = 1
|
| 116 |
+
|
| 117 |
+
inertias = self.calculate_elbow(k_max)
|
| 118 |
+
|
| 119 |
+
for i in range(len(inertias)):
|
| 120 |
+
delta_1.append(inertias[i] - inertias[i - 1] if i > 0 else 0.0)
|
| 121 |
+
delta_2.append(delta_1[i] - delta_1[i - 1] if i > 1 else 0.0)
|
| 122 |
+
|
| 123 |
+
for j in range(len(inertias)):
|
| 124 |
+
strength = 0 if j <= 1 or j == len(inertias) - 1 else delta_2[j + 1] - delta_1[j + 1]
|
| 125 |
+
|
| 126 |
+
if strength > max_strength:
|
| 127 |
+
max_strength = strength
|
| 128 |
+
k = j + 1
|
| 129 |
+
|
| 130 |
+
return k
|
| 131 |
+
|
| 132 |
+
def cluster(self, ratio: float = 0.1, num_sentences: int = None) -> List[int]:
|
| 133 |
+
"""
|
| 134 |
+
Clusters sentences based on the ratio.
|
| 135 |
+
|
| 136 |
+
:param ratio: Ratio to use for clustering.
|
| 137 |
+
:param num_sentences: Number of sentences. Overrides ratio.
|
| 138 |
+
:return: Sentences index that qualify for summary.
|
| 139 |
+
"""
|
| 140 |
+
|
| 141 |
+
if num_sentences is not None:
|
| 142 |
+
if num_sentences == 0:
|
| 143 |
+
return []
|
| 144 |
+
|
| 145 |
+
k = min(num_sentences, len(self.features))
|
| 146 |
+
else:
|
| 147 |
+
k = max(int(len(self.features) * ratio), 1)
|
| 148 |
+
|
| 149 |
+
model = self.__get_model(k).fit(self.features)
|
| 150 |
+
|
| 151 |
+
centroids = self.__get_centroids(model)
|
| 152 |
+
cluster_args = self.__find_closest_args(centroids)
|
| 153 |
+
|
| 154 |
+
sorted_values = sorted(cluster_args.values())
|
| 155 |
+
return sorted_values
|
| 156 |
+
|
| 157 |
+
def __call__(self, ratio: float = 0.1, num_sentences: int = None) -> List[int]:
|
| 158 |
+
"""
|
| 159 |
+
Clusters sentences based on the ratio.
|
| 160 |
+
|
| 161 |
+
:param ratio: Ratio to use for clustering.
|
| 162 |
+
:param num_sentences: Number of sentences. Overrides ratio.
|
| 163 |
+
:return: Sentences index that qualify for summary.
|
| 164 |
+
"""
|
| 165 |
+
return self.cluster(ratio)
|
extractive_summarizer/model_processors.py
ADDED
|
@@ -0,0 +1,401 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple, Union
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
from transformers import (AlbertModel, AlbertTokenizer, BartModel,
|
| 5 |
+
BartTokenizer, BertModel, BertTokenizer,
|
| 6 |
+
CamembertModel, CamembertTokenizer, CTRLModel,
|
| 7 |
+
CTRLTokenizer, DistilBertModel, DistilBertTokenizer,
|
| 8 |
+
GPT2Model, GPT2Tokenizer, LongformerModel,
|
| 9 |
+
LongformerTokenizer, OpenAIGPTModel,
|
| 10 |
+
OpenAIGPTTokenizer, PreTrainedModel,
|
| 11 |
+
PreTrainedTokenizer, RobertaModel, RobertaTokenizer,
|
| 12 |
+
TransfoXLModel, TransfoXLTokenizer, XLMModel,
|
| 13 |
+
XLMTokenizer, XLNetModel, XLNetTokenizer)
|
| 14 |
+
|
| 15 |
+
from extractive_summarizer.bert_parent import BertParent
|
| 16 |
+
from extractive_summarizer.cluster_features import ClusterFeatures
|
| 17 |
+
from extractive_summarizer.sentence_handler import SentenceHandler
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class ModelProcessor(object):
|
| 21 |
+
aggregate_map = {
|
| 22 |
+
'mean': np.mean,
|
| 23 |
+
'min': np.min,
|
| 24 |
+
'median': np.median,
|
| 25 |
+
'max': np.max,
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
model: str = 'bert-large-uncased',
|
| 31 |
+
custom_model: PreTrainedModel = None,
|
| 32 |
+
custom_tokenizer: PreTrainedTokenizer = None,
|
| 33 |
+
hidden: Union[List[int], int] = -2,
|
| 34 |
+
reduce_option: str = 'mean',
|
| 35 |
+
sentence_handler: SentenceHandler = SentenceHandler(),
|
| 36 |
+
random_state: int = 12345,
|
| 37 |
+
hidden_concat: bool = False,
|
| 38 |
+
gpu_id: int = 0,
|
| 39 |
+
):
|
| 40 |
+
"""
|
| 41 |
+
This is the parent Bert Summarizer model. New methods should implement this class.
|
| 42 |
+
|
| 43 |
+
:param model: This parameter is associated with the inherit string parameters from the transformers library.
|
| 44 |
+
:param custom_model: If you have a pre-trained model, you can add the model class here.
|
| 45 |
+
:param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
|
| 46 |
+
:param hidden: This signifies which layer(s) of the BERT model you would like to use as embeddings.
|
| 47 |
+
:param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
|
| 48 |
+
:param sentence_handler: The handler to process sentences. If want to use coreference, instantiate and pass.
|
| 49 |
+
CoreferenceHandler instance
|
| 50 |
+
:param random_state: The random state to reproduce summarizations.
|
| 51 |
+
:param hidden_concat: Whether or not to concat multiple hidden layers.
|
| 52 |
+
:param gpu_id: GPU device index if CUDA is available.
|
| 53 |
+
"""
|
| 54 |
+
np.random.seed(random_state)
|
| 55 |
+
self.model = BertParent(model, custom_model, custom_tokenizer, gpu_id)
|
| 56 |
+
self.hidden = hidden
|
| 57 |
+
self.reduce_option = reduce_option
|
| 58 |
+
self.sentence_handler = sentence_handler
|
| 59 |
+
self.random_state = random_state
|
| 60 |
+
self.hidden_concat = hidden_concat
|
| 61 |
+
|
| 62 |
+
def cluster_runner(
|
| 63 |
+
self,
|
| 64 |
+
content: List[str],
|
| 65 |
+
ratio: float = 0.2,
|
| 66 |
+
algorithm: str = 'kmeans',
|
| 67 |
+
use_first: bool = True,
|
| 68 |
+
num_sentences: int = None
|
| 69 |
+
) -> Tuple[List[str], np.ndarray]:
|
| 70 |
+
"""
|
| 71 |
+
Runs the cluster algorithm based on the hidden state. Returns both the embeddings and sentences.
|
| 72 |
+
|
| 73 |
+
:param content: Content list of sentences.
|
| 74 |
+
:param ratio: The ratio to use for clustering.
|
| 75 |
+
:param algorithm: Type of algorithm to use for clustering.
|
| 76 |
+
:param use_first: Return the first sentence in the output (helpful for news stories, etc).
|
| 77 |
+
:param num_sentences: Number of sentences to use for summarization.
|
| 78 |
+
:return: A tuple of summarized sentences and embeddings
|
| 79 |
+
"""
|
| 80 |
+
if num_sentences is not None:
|
| 81 |
+
num_sentences = num_sentences if use_first else num_sentences
|
| 82 |
+
|
| 83 |
+
hidden = self.model(
|
| 84 |
+
content, self.hidden, self.reduce_option, hidden_concat=self.hidden_concat)
|
| 85 |
+
hidden_args = ClusterFeatures(
|
| 86 |
+
hidden, algorithm, random_state=self.random_state).cluster(ratio, num_sentences)
|
| 87 |
+
|
| 88 |
+
if use_first:
|
| 89 |
+
|
| 90 |
+
if not hidden_args:
|
| 91 |
+
hidden_args.append(0)
|
| 92 |
+
|
| 93 |
+
elif hidden_args[0] != 0:
|
| 94 |
+
hidden_args.insert(0, 0)
|
| 95 |
+
|
| 96 |
+
sentences = [content[j] for j in hidden_args]
|
| 97 |
+
embeddings = np.asarray([hidden[j] for j in hidden_args])
|
| 98 |
+
|
| 99 |
+
return sentences, embeddings
|
| 100 |
+
|
| 101 |
+
def __run_clusters(
|
| 102 |
+
self,
|
| 103 |
+
content: List[str],
|
| 104 |
+
ratio: float = 0.2,
|
| 105 |
+
algorithm: str = 'kmeans',
|
| 106 |
+
use_first: bool = True,
|
| 107 |
+
num_sentences: int = None
|
| 108 |
+
) -> List[str]:
|
| 109 |
+
"""
|
| 110 |
+
Runs clusters and returns sentences.
|
| 111 |
+
|
| 112 |
+
:param content: The content of sentences.
|
| 113 |
+
:param ratio: Ratio to use for for clustering.
|
| 114 |
+
:param algorithm: Algorithm selection for clustering.
|
| 115 |
+
:param use_first: Whether to use first sentence
|
| 116 |
+
:param num_sentences: Number of sentences. Overrides ratio.
|
| 117 |
+
:return: summarized sentences
|
| 118 |
+
"""
|
| 119 |
+
sentences, _ = self.cluster_runner(
|
| 120 |
+
content, ratio, algorithm, use_first, num_sentences)
|
| 121 |
+
return sentences
|
| 122 |
+
|
| 123 |
+
def __retrieve_summarized_embeddings(
|
| 124 |
+
self,
|
| 125 |
+
content: List[str],
|
| 126 |
+
ratio: float = 0.2,
|
| 127 |
+
algorithm: str = 'kmeans',
|
| 128 |
+
use_first: bool = True,
|
| 129 |
+
num_sentences: int = None
|
| 130 |
+
) -> np.ndarray:
|
| 131 |
+
"""
|
| 132 |
+
Retrieves embeddings of the summarized sentences.
|
| 133 |
+
|
| 134 |
+
:param content: The content of sentences.
|
| 135 |
+
:param ratio: Ratio to use for for clustering.
|
| 136 |
+
:param algorithm: Algorithm selection for clustering.
|
| 137 |
+
:param use_first: Whether to use first sentence
|
| 138 |
+
:return: Summarized embeddings
|
| 139 |
+
"""
|
| 140 |
+
_, embeddings = self.cluster_runner(
|
| 141 |
+
content, ratio, algorithm, use_first, num_sentences)
|
| 142 |
+
return embeddings
|
| 143 |
+
|
| 144 |
+
def calculate_elbow(
|
| 145 |
+
self,
|
| 146 |
+
body: str,
|
| 147 |
+
algorithm: str = 'kmeans',
|
| 148 |
+
min_length: int = 40,
|
| 149 |
+
max_length: int = 600,
|
| 150 |
+
k_max: int = None,
|
| 151 |
+
) -> List[float]:
|
| 152 |
+
"""
|
| 153 |
+
Calculates elbow across the clusters.
|
| 154 |
+
|
| 155 |
+
:param body: The input body to summarize.
|
| 156 |
+
:param algorithm: The algorithm to use for clustering.
|
| 157 |
+
:param min_length: The min length to use.
|
| 158 |
+
:param max_length: The max length to use.
|
| 159 |
+
:param k_max: The maximum number of clusters to search.
|
| 160 |
+
:return: List of elbow inertia values.
|
| 161 |
+
"""
|
| 162 |
+
sentences = self.sentence_handler(body, min_length, max_length)
|
| 163 |
+
|
| 164 |
+
if k_max is None:
|
| 165 |
+
k_max = len(sentences) - 1
|
| 166 |
+
|
| 167 |
+
hidden = self.model(sentences, self.hidden,
|
| 168 |
+
self.reduce_option, hidden_concat=self.hidden_concat)
|
| 169 |
+
elbow = ClusterFeatures(
|
| 170 |
+
hidden, algorithm, random_state=self.random_state).calculate_elbow(k_max)
|
| 171 |
+
|
| 172 |
+
return elbow
|
| 173 |
+
|
| 174 |
+
def calculate_optimal_k(
|
| 175 |
+
self,
|
| 176 |
+
body: str,
|
| 177 |
+
algorithm: str = 'kmeans',
|
| 178 |
+
min_length: int = 40,
|
| 179 |
+
max_length: int = 600,
|
| 180 |
+
k_max: int = None,
|
| 181 |
+
):
|
| 182 |
+
"""
|
| 183 |
+
Calculates the optimal Elbow K.
|
| 184 |
+
|
| 185 |
+
:param body: The input body to summarize.
|
| 186 |
+
:param algorithm: The algorithm to use for clustering.
|
| 187 |
+
:param min_length: The min length to use.
|
| 188 |
+
:param max_length: The max length to use.
|
| 189 |
+
:param k_max: The maximum number of clusters to search.
|
| 190 |
+
:return:
|
| 191 |
+
"""
|
| 192 |
+
sentences = self.sentence_handler(body, min_length, max_length)
|
| 193 |
+
|
| 194 |
+
if k_max is None:
|
| 195 |
+
k_max = len(sentences) - 1
|
| 196 |
+
|
| 197 |
+
hidden = self.model(sentences, self.hidden,
|
| 198 |
+
self.reduce_option, hidden_concat=self.hidden_concat)
|
| 199 |
+
optimal_k = ClusterFeatures(
|
| 200 |
+
hidden, algorithm, random_state=self.random_state).calculate_optimal_cluster(k_max)
|
| 201 |
+
|
| 202 |
+
return optimal_k
|
| 203 |
+
|
| 204 |
+
def run_embeddings(
|
| 205 |
+
self,
|
| 206 |
+
body: str,
|
| 207 |
+
ratio: float = 0.2,
|
| 208 |
+
min_length: int = 40,
|
| 209 |
+
max_length: int = 600,
|
| 210 |
+
use_first: bool = True,
|
| 211 |
+
algorithm: str = 'kmeans',
|
| 212 |
+
num_sentences: int = None,
|
| 213 |
+
aggregate: str = None,
|
| 214 |
+
) -> Optional[np.ndarray]:
|
| 215 |
+
"""
|
| 216 |
+
Preprocesses the sentences, runs the clusters to find the centroids, then combines the embeddings.
|
| 217 |
+
|
| 218 |
+
:param body: The raw string body to process
|
| 219 |
+
:param ratio: Ratio of sentences to use
|
| 220 |
+
:param min_length: Minimum length of sentence candidates to utilize for the summary.
|
| 221 |
+
:param max_length: Maximum length of sentence candidates to utilize for the summary
|
| 222 |
+
:param use_first: Whether or not to use the first sentence
|
| 223 |
+
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
|
| 224 |
+
:param num_sentences: Number of sentences to use. Overrides ratio.
|
| 225 |
+
:param aggregate: One of mean, median, max, min. Applied on zero axis
|
| 226 |
+
:return: A summary embedding
|
| 227 |
+
"""
|
| 228 |
+
sentences = self.sentence_handler(body, min_length, max_length)
|
| 229 |
+
|
| 230 |
+
if sentences:
|
| 231 |
+
embeddings = self.__retrieve_summarized_embeddings(
|
| 232 |
+
sentences, ratio, algorithm, use_first, num_sentences)
|
| 233 |
+
|
| 234 |
+
if aggregate is not None:
|
| 235 |
+
assert aggregate in [
|
| 236 |
+
'mean', 'median', 'max', 'min'], "aggregate must be mean, min, max, or median"
|
| 237 |
+
embeddings = self.aggregate_map[aggregate](embeddings, axis=0)
|
| 238 |
+
|
| 239 |
+
return embeddings
|
| 240 |
+
|
| 241 |
+
return None
|
| 242 |
+
|
| 243 |
+
def run(
|
| 244 |
+
self,
|
| 245 |
+
body: str,
|
| 246 |
+
ratio: float = 0.2,
|
| 247 |
+
min_length: int = 40,
|
| 248 |
+
max_length: int = 600,
|
| 249 |
+
use_first: bool = True,
|
| 250 |
+
algorithm: str = 'kmeans',
|
| 251 |
+
num_sentences: int = None,
|
| 252 |
+
return_as_list: bool = False
|
| 253 |
+
) -> Union[List, str]:
|
| 254 |
+
"""
|
| 255 |
+
Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.
|
| 256 |
+
|
| 257 |
+
:param body: The raw string body to process
|
| 258 |
+
:param ratio: Ratio of sentences to use
|
| 259 |
+
:param min_length: Minimum length of sentence candidates to utilize for the summary.
|
| 260 |
+
:param max_length: Maximum length of sentence candidates to utilize for the summary
|
| 261 |
+
:param use_first: Whether or not to use the first sentence
|
| 262 |
+
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
|
| 263 |
+
:param num_sentences: Number of sentences to use (overrides ratio).
|
| 264 |
+
:param return_as_list: Whether or not to return sentences as list.
|
| 265 |
+
:return: A summary sentence
|
| 266 |
+
"""
|
| 267 |
+
sentences = self.sentence_handler(body, min_length, max_length)
|
| 268 |
+
|
| 269 |
+
if sentences:
|
| 270 |
+
sentences = self.__run_clusters(
|
| 271 |
+
sentences, ratio, algorithm, use_first, num_sentences)
|
| 272 |
+
|
| 273 |
+
if return_as_list:
|
| 274 |
+
return sentences
|
| 275 |
+
else:
|
| 276 |
+
return ' '.join(sentences)
|
| 277 |
+
|
| 278 |
+
def __call__(
|
| 279 |
+
self,
|
| 280 |
+
body: str,
|
| 281 |
+
ratio: float = 0.2,
|
| 282 |
+
min_length: int = 40,
|
| 283 |
+
max_length: int = 600,
|
| 284 |
+
use_first: bool = True,
|
| 285 |
+
algorithm: str = 'kmeans',
|
| 286 |
+
num_sentences: int = None,
|
| 287 |
+
return_as_list: bool = False,
|
| 288 |
+
) -> str:
|
| 289 |
+
"""
|
| 290 |
+
(utility that wraps around the run function)
|
| 291 |
+
Preprocesses the sentences, runs the clusters to find the centroids, then combines the sentences.
|
| 292 |
+
|
| 293 |
+
:param body: The raw string body to process.
|
| 294 |
+
:param ratio: Ratio of sentences to use.
|
| 295 |
+
:param min_length: Minimum length of sentence candidates to utilize for the summary.
|
| 296 |
+
:param max_length: Maximum length of sentence candidates to utilize for the summary.
|
| 297 |
+
:param use_first: Whether or not to use the first sentence.
|
| 298 |
+
:param algorithm: Which clustering algorithm to use. (kmeans, gmm)
|
| 299 |
+
:param Number of sentences to use (overrides ratio).
|
| 300 |
+
:param return_as_list: Whether or not to return sentences as list.
|
| 301 |
+
:return: A summary sentence.
|
| 302 |
+
"""
|
| 303 |
+
return self.run(
|
| 304 |
+
body, ratio, min_length, max_length, algorithm=algorithm, use_first=use_first, num_sentences=num_sentences,
|
| 305 |
+
return_as_list=return_as_list
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
class Summarizer(ModelProcessor):
|
| 310 |
+
|
| 311 |
+
def __init__(
|
| 312 |
+
self,
|
| 313 |
+
model: str = 'bert-large-uncased',
|
| 314 |
+
custom_model: PreTrainedModel = None,
|
| 315 |
+
custom_tokenizer: PreTrainedTokenizer = None,
|
| 316 |
+
hidden: Union[List[int], int] = -2,
|
| 317 |
+
reduce_option: str = 'mean',
|
| 318 |
+
sentence_handler: SentenceHandler = SentenceHandler(),
|
| 319 |
+
random_state: int = 12345,
|
| 320 |
+
hidden_concat: bool = False,
|
| 321 |
+
gpu_id: int = 0,
|
| 322 |
+
):
|
| 323 |
+
"""
|
| 324 |
+
This is the main Bert Summarizer class.
|
| 325 |
+
|
| 326 |
+
:param model: This parameter is associated with the inherit string parameters from the transformers library.
|
| 327 |
+
:param custom_model: If you have a pre-trained model, you can add the model class here.
|
| 328 |
+
:param custom_tokenizer: If you have a custom tokenizer, you can add the tokenizer here.
|
| 329 |
+
:param hidden: This signifies which layer of the BERT model you would like to use as embeddings.
|
| 330 |
+
:param reduce_option: Given the output of the bert model, this param determines how you want to reduce results.
|
| 331 |
+
:param greedyness: associated with the neuralcoref library. Determines how greedy coref should be.
|
| 332 |
+
:param language: Which language to use for training.
|
| 333 |
+
:param random_state: The random state to reproduce summarizations.
|
| 334 |
+
:param hidden_concat: Whether or not to concat multiple hidden layers.
|
| 335 |
+
:param gpu_id: GPU device index if CUDA is available.
|
| 336 |
+
"""
|
| 337 |
+
|
| 338 |
+
super(Summarizer, self).__init__(
|
| 339 |
+
model, custom_model, custom_tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class TransformerSummarizer(ModelProcessor):
|
| 344 |
+
"""
|
| 345 |
+
Another type of Summarizer class to choose keyword based model and tokenizer
|
| 346 |
+
"""
|
| 347 |
+
|
| 348 |
+
MODEL_DICT = {
|
| 349 |
+
'Bert': (BertModel, BertTokenizer),
|
| 350 |
+
'OpenAIGPT': (OpenAIGPTModel, OpenAIGPTTokenizer),
|
| 351 |
+
'GPT2': (GPT2Model, GPT2Tokenizer),
|
| 352 |
+
'CTRL': (CTRLModel, CTRLTokenizer),
|
| 353 |
+
'TransfoXL': (TransfoXLModel, TransfoXLTokenizer),
|
| 354 |
+
'XLNet': (XLNetModel, XLNetTokenizer),
|
| 355 |
+
'XLM': (XLMModel, XLMTokenizer),
|
| 356 |
+
'DistilBert': (DistilBertModel, DistilBertTokenizer),
|
| 357 |
+
}
|
| 358 |
+
|
| 359 |
+
def __init__(
|
| 360 |
+
self,
|
| 361 |
+
transformer_type: str = 'Bert',
|
| 362 |
+
transformer_model_key: str = 'bert-base-uncased',
|
| 363 |
+
transformer_tokenizer_key: str = None,
|
| 364 |
+
hidden: Union[List[int], int] = -2,
|
| 365 |
+
reduce_option: str = 'mean',
|
| 366 |
+
sentence_handler: SentenceHandler = SentenceHandler(),
|
| 367 |
+
random_state: int = 12345,
|
| 368 |
+
hidden_concat: bool = False,
|
| 369 |
+
gpu_id: int = 0,
|
| 370 |
+
):
|
| 371 |
+
"""
|
| 372 |
+
:param transformer_type: The Transformer type, such as Bert, GPT2, DistilBert, etc.
|
| 373 |
+
:param transformer_model_key: The transformer model key. This is the directory for the model.
|
| 374 |
+
:param transformer_tokenizer_key: The transformer tokenizer key. This is the tokenizer directory.
|
| 375 |
+
:param hidden: The hidden output layers to use for the summarization.
|
| 376 |
+
:param reduce_option: The reduce option, such as mean, max, min, median, etc.
|
| 377 |
+
:param sentence_handler: The sentence handler class to process the raw text.
|
| 378 |
+
:param random_state: The random state to use.
|
| 379 |
+
:param hidden_concat: Deprecated hidden concat option.
|
| 380 |
+
:param gpu_id: GPU device index if CUDA is available.
|
| 381 |
+
"""
|
| 382 |
+
try:
|
| 383 |
+
self.MODEL_DICT['Roberta'] = (RobertaModel, RobertaTokenizer)
|
| 384 |
+
self.MODEL_DICT['Albert'] = (AlbertModel, AlbertTokenizer)
|
| 385 |
+
self.MODEL_DICT['Camembert'] = (CamembertModel, CamembertTokenizer)
|
| 386 |
+
self.MODEL_DICT['Bart'] = (BartModel, BartTokenizer)
|
| 387 |
+
self.MODEL_DICT['Longformer'] = (LongformerModel, LongformerTokenizer)
|
| 388 |
+
except Exception:
|
| 389 |
+
pass # older transformer version
|
| 390 |
+
|
| 391 |
+
model_clz, tokenizer_clz = self.MODEL_DICT[transformer_type]
|
| 392 |
+
model = model_clz.from_pretrained(
|
| 393 |
+
transformer_model_key, output_hidden_states=True)
|
| 394 |
+
|
| 395 |
+
tokenizer = tokenizer_clz.from_pretrained(
|
| 396 |
+
transformer_tokenizer_key if transformer_tokenizer_key is not None else transformer_model_key
|
| 397 |
+
)
|
| 398 |
+
|
| 399 |
+
super().__init__(
|
| 400 |
+
None, model, tokenizer, hidden, reduce_option, sentence_handler, random_state, hidden_concat, gpu_id
|
| 401 |
+
)
|
extractive_summarizer/sentence_handler.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
from spacy.lang.en import English
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class SentenceHandler(object):
|
| 7 |
+
|
| 8 |
+
def __init__(self, language=English):
|
| 9 |
+
"""
|
| 10 |
+
Base Sentence Handler with Spacy support.
|
| 11 |
+
|
| 12 |
+
:param language: Determines the language to use with spacy.
|
| 13 |
+
"""
|
| 14 |
+
self.nlp = language()
|
| 15 |
+
|
| 16 |
+
try:
|
| 17 |
+
# Supports spacy 2.0
|
| 18 |
+
self.nlp.add_pipe(self.nlp.create_pipe('sentencizer'))
|
| 19 |
+
self.is_spacy_3 = False
|
| 20 |
+
except Exception:
|
| 21 |
+
# Supports spacy 3.0
|
| 22 |
+
self.nlp.add_pipe("sentencizer")
|
| 23 |
+
self.is_spacy_3 = True
|
| 24 |
+
|
| 25 |
+
def sentence_processor(self, doc,
|
| 26 |
+
min_length: int = 40,
|
| 27 |
+
max_length: int = 600) -> List[str]:
|
| 28 |
+
"""
|
| 29 |
+
Processes a given spacy document and turns them into sentences.
|
| 30 |
+
|
| 31 |
+
:param doc: The document to use from spacy.
|
| 32 |
+
:param min_length: The minimum length a sentence should be to be considered.
|
| 33 |
+
:param max_length: The maximum length a sentence should be to be considered.
|
| 34 |
+
:return: Sentences.
|
| 35 |
+
"""
|
| 36 |
+
to_return = []
|
| 37 |
+
|
| 38 |
+
for c in doc.sents:
|
| 39 |
+
if max_length > len(c.text.strip()) > min_length:
|
| 40 |
+
|
| 41 |
+
if self.is_spacy_3:
|
| 42 |
+
to_return.append(c.text.strip())
|
| 43 |
+
else:
|
| 44 |
+
to_return.append(c.string.strip())
|
| 45 |
+
|
| 46 |
+
return to_return
|
| 47 |
+
|
| 48 |
+
def process(self, body: str,
|
| 49 |
+
min_length: int = 40,
|
| 50 |
+
max_length: int = 600) -> List[str]:
|
| 51 |
+
"""
|
| 52 |
+
Processes the content sentences.
|
| 53 |
+
|
| 54 |
+
:param body: The raw string body to process
|
| 55 |
+
:param min_length: Minimum length that the sentences must be
|
| 56 |
+
:param max_length: Max length that the sentences mus fall under
|
| 57 |
+
:return: Returns a list of sentences.
|
| 58 |
+
"""
|
| 59 |
+
doc = self.nlp(body)
|
| 60 |
+
return self.sentence_processor(doc, min_length, max_length)
|
| 61 |
+
|
| 62 |
+
def __call__(self, body: str,
|
| 63 |
+
min_length: int = 40,
|
| 64 |
+
max_length: int = 600) -> List[str]:
|
| 65 |
+
"""
|
| 66 |
+
Processes the content sentences.
|
| 67 |
+
|
| 68 |
+
:param body: The raw string body to process
|
| 69 |
+
:param min_length: Minimum length that the sentences must be
|
| 70 |
+
:param max_length: Max length that the sentences mus fall under
|
| 71 |
+
:return: Returns a list of sentences.
|
| 72 |
+
"""
|
| 73 |
+
return self.process(body, min_length, max_length)
|