Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import io
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from transformers import (
|
| 7 |
+
AutoImageProcessor,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
AutoModelForCausalLM,
|
| 10 |
+
)
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
model_root = "qihoo360/fg-clip2-base"
|
| 14 |
+
model = AutoModelForCausalLM.from_pretrained(model_root,trust_remote_code=True)
|
| 15 |
+
|
| 16 |
+
device = model.device
|
| 17 |
+
|
| 18 |
+
tokenizer = AutoTokenizer.from_pretrained(model_root)
|
| 19 |
+
image_processor = AutoImageProcessor.from_pretrained(model_root)
|
| 20 |
+
|
| 21 |
+
import math
|
| 22 |
+
import matplotlib
|
| 23 |
+
matplotlib.use('Agg')
|
| 24 |
+
import matplotlib.pyplot as plt
|
| 25 |
+
|
| 26 |
+
import ast
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def resize_short_edge(image, target_size=2048):
|
| 30 |
+
|
| 31 |
+
if isinstance(image, str):
|
| 32 |
+
image = Image.open(image)
|
| 33 |
+
|
| 34 |
+
width, height = image.size
|
| 35 |
+
short_edge = min(width, height)
|
| 36 |
+
|
| 37 |
+
if short_edge >= target_size:
|
| 38 |
+
return image
|
| 39 |
+
|
| 40 |
+
scale = target_size / short_edge
|
| 41 |
+
new_width = int(width * scale)
|
| 42 |
+
new_height = int(height * scale)
|
| 43 |
+
|
| 44 |
+
resized_image = image.resize((new_width, new_height))
|
| 45 |
+
|
| 46 |
+
return resized_image
|
| 47 |
+
|
| 48 |
+
def Get_Densefeature(image, candidate_labels):
|
| 49 |
+
"""
|
| 50 |
+
Takes an image and a comma-separated string of candidate labels,
|
| 51 |
+
and returns the classification scores.
|
| 52 |
+
"""
|
| 53 |
+
candidate_labels = ast.literal_eval(candidate_labels)
|
| 54 |
+
assert len(candidate_labels) != 0
|
| 55 |
+
print(candidate_labels)
|
| 56 |
+
|
| 57 |
+
image = image.convert("RGB")
|
| 58 |
+
|
| 59 |
+
image = resize_short_edge(image,target_size=2048)
|
| 60 |
+
|
| 61 |
+
image_input = image_processor(images=image, max_num_patches=16384, return_tensors="pt").to(device)
|
| 62 |
+
# captions = ["电脑","黑猫","窗户","window","white cat","book"]
|
| 63 |
+
captions = candidate_labels
|
| 64 |
+
|
| 65 |
+
with torch.no_grad():
|
| 66 |
+
dense_image_feature = model.get_image_dense_feature(**image_input)
|
| 67 |
+
|
| 68 |
+
spatial_values = image_input["spatial_shapes"][0]
|
| 69 |
+
real_h = spatial_values[0].item()
|
| 70 |
+
real_w = spatial_values[1].item()
|
| 71 |
+
real_pixel_tokens_num = real_w*real_h
|
| 72 |
+
dense_image_feature = dense_image_feature[0][:real_pixel_tokens_num]
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
captions = [caption.lower() for caption in captions]
|
| 76 |
+
caption_input = tokenizer(captions, padding="max_length", max_length=64, truncation=True, return_tensors="pt").to(device)
|
| 77 |
+
|
| 78 |
+
text_feature = model.get_text_features(**caption_input, walk_type="box")
|
| 79 |
+
text_feature = text_feature / text_feature.norm(p=2, dim=-1, keepdim=True)
|
| 80 |
+
dense_image_feature = dense_image_feature / dense_image_feature.norm(p=2, dim=-1, keepdim=True)
|
| 81 |
+
|
| 82 |
+
similarity = dense_image_feature @ text_feature.T
|
| 83 |
+
similarity = similarity.cpu()
|
| 84 |
+
|
| 85 |
+
num_classes = len(captions)
|
| 86 |
+
cols = 3
|
| 87 |
+
rows = (num_classes + cols - 1) // cols
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
aspect_ratio = real_w / real_h
|
| 91 |
+
|
| 92 |
+
fig_width_inch = 3 * cols
|
| 93 |
+
fig_height_inch = fig_width_inch / aspect_ratio * rows / cols
|
| 94 |
+
|
| 95 |
+
fig, axes = plt.subplots(rows, cols, figsize=(fig_width_inch, fig_height_inch))
|
| 96 |
+
fig.subplots_adjust(wspace=0.01, hspace=0.01)
|
| 97 |
+
|
| 98 |
+
if num_classes == 1:
|
| 99 |
+
axes = [axes]
|
| 100 |
+
else:
|
| 101 |
+
axes = axes.flatten()
|
| 102 |
+
|
| 103 |
+
for cls_index in range(num_classes):
|
| 104 |
+
similarity_map = similarity[:, cls_index].cpu().numpy()
|
| 105 |
+
show_image = similarity_map.reshape((real_h, real_w))
|
| 106 |
+
|
| 107 |
+
ax = axes[cls_index]
|
| 108 |
+
ax.imshow(show_image, cmap='viridis', aspect='equal') # 保持原始比例
|
| 109 |
+
ax.set_xticks([])
|
| 110 |
+
ax.set_yticks([])
|
| 111 |
+
ax.axis('off')
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
for idx in range(num_classes, len(axes)):
|
| 115 |
+
axes[idx].axis('off')
|
| 116 |
+
|
| 117 |
+
buf = io.BytesIO()
|
| 118 |
+
plt.savefig(buf, format='png')
|
| 119 |
+
buf.seek(0)
|
| 120 |
+
plt.close(fig)
|
| 121 |
+
|
| 122 |
+
pil_img = Image.open(buf)
|
| 123 |
+
|
| 124 |
+
# buf.close()
|
| 125 |
+
return pil_img
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
with gr.Blocks() as demo:
|
| 132 |
+
gr.Markdown("# FG-CLIP 2 Densefeature")
|
| 133 |
+
gr.Markdown(
|
| 134 |
+
|
| 135 |
+
"This app uses the FG-CLIP 2 model (qihoo360/fg-clip2-base) for Densefeature show on CPU :"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
with gr.Column():
|
| 140 |
+
image_input = gr.Image(type="pil")
|
| 141 |
+
text_input = gr.Textbox(label="Input a list of labels, example:['a','b','c']")
|
| 142 |
+
dfs_button = gr.Button("Run Densefeature", visible=True)
|
| 143 |
+
with gr.Column():
|
| 144 |
+
dfs_output = gr.Image(label="Similarity Visualization", type="pil")
|
| 145 |
+
|
| 146 |
+
examples = [
|
| 147 |
+
["./cat_dfclor.jpg", str(["电脑","黑猫","窗户","window","white cat","book"])],
|
| 148 |
+
]
|
| 149 |
+
gr.Examples(
|
| 150 |
+
examples=examples,
|
| 151 |
+
inputs=[image_input, text_input],
|
| 152 |
+
|
| 153 |
+
)
|
| 154 |
+
dfs_button.click(fn=Get_Densefeature, inputs=[image_input, text_input], outputs=dfs_output)
|
| 155 |
+
|
| 156 |
+
demo.launch()
|
| 157 |
+
|
| 158 |
+
# demo.launch(server_name="0.0.0.0", server_port=7862, share=True)
|