File size: 24,791 Bytes
6d29b78
 
 
 
 
 
 
9d1bc12
6d29b78
9d1bc12
6d29b78
 
 
 
2e8da0d
6d29b78
 
 
 
 
 
9d1bc12
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
 
9d1bc12
6d29b78
9d1bc12
 
 
6d29b78
 
9d1bc12
 
 
 
6d29b78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1bc12
6d29b78
 
 
9d1bc12
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
9d1bc12
a42df2c
 
 
9d1bc12
a42df2c
 
 
 
 
 
 
 
 
 
 
 
9d1bc12
 
a42df2c
6d29b78
9d1bc12
 
 
a42df2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1bc12
 
a42df2c
 
9d1bc12
a42df2c
9d1bc12
 
a42df2c
9d1bc12
a42df2c
 
 
 
9d1bc12
a42df2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d1bc12
 
a42df2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
 
9d1bc12
 
 
6d29b78
 
 
 
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
9d1bc12
 
6d29b78
 
9d1bc12
 
 
6d29b78
 
 
 
9d1bc12
6d29b78
9d1bc12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
9d1bc12
 
6d29b78
9d1bc12
 
 
 
6d29b78
9d1bc12
6d29b78
 
9d1bc12
6d29b78
9d1bc12
 
 
 
 
 
02db00d
9d1bc12
02db00d
361a3e8
 
 
 
8826601
 
a42df2c
121aab3
8826601
9d1bc12
8c137f7
9d1bc12
 
 
6d29b78
9d1bc12
6d29b78
 
f99be6b
 
 
02db00d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99be6b
 
 
 
9d1bc12
 
81d6159
8c054ac
c9f04dd
 
 
 
 
 
 
a038035
 
 
 
 
 
c9f04dd
a038035
c9f04dd
a038035
 
c9f04dd
a038035
 
c9f04dd
 
 
 
 
2314c25
 
 
 
 
 
 
c9f04dd
2314c25
2533111
2314c25
 
 
 
 
c9f04dd
2314c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99be6b
2314c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d29b78
2314c25
81d6159
8c054ac
 
 
 
 
81d6159
 
 
 
 
8c054ac
 
 
 
8ee0e91
ea621bd
81d6159
 
 
8c054ac
81d6159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c054ac
 
81d6159
 
 
 
 
 
 
 
8c054ac
81d6159
 
 
 
 
 
 
 
 
 
8c054ac
81d6159
 
 
8c054ac
 
81d6159
 
8c054ac
81d6159
8c054ac
8ee0e91
81d6159
 
8c054ac
6d29b78
9d1bc12
 
6d29b78
 
145ce23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f99be6b
 
 
145ce23
 
f99be6b
145ce23
 
f99be6b
145ce23
f99be6b
145ce23
 
 
f99be6b
 
 
 
145ce23
f99be6b
8024c78
 
 
 
 
 
 
 
f99be6b
145ce23
25905dd
6d29b78
9d1bc12
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time

from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []

# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
    global LOGS
    print(msg)
    LOGS += msg + "\n"
    return msg


# ============================================================
# SYSTEM METRICS โ€” LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
    try:
        log(f"\n===== ๐Ÿ”ฅ SYSTEM STATS {tag} =====")

        # ============= GPU STATS =============
        if torch.cuda.is_available():
            allocated = torch.cuda.memory_allocated(0) / 1e9
            reserved = torch.cuda.memory_reserved(0) / 1e9
            total = torch.cuda.get_device_properties(0).total_memory / 1e9
            free = total - allocated

            log(f"๐Ÿ’  GPU Total     : {total:.2f} GB")
            log(f"๐Ÿ’  GPU Allocated : {allocated:.2f} GB")
            log(f"๐Ÿ’  GPU Reserved  : {reserved:.2f} GB")
            log(f"๐Ÿ’  GPU Free      : {free:.2f} GB")

        # ============= CPU STATS ============
        cpu = psutil.cpu_percent()
        ram_used = psutil.virtual_memory().used / 1e9
        ram_total = psutil.virtual_memory().total / 1e9

        log(f"๐Ÿง  CPU Usage     : {cpu}%")
        log(f"๐Ÿง  RAM Used      : {ram_used:.2f} GB / {ram_total:.2f} GB")

    except Exception as e:
        log(f"โš ๏ธ Failed to log system stats: {e}")


# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("๐Ÿ” Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")

log(f"๐Ÿ“Œ PYTHON VERSION       : {sys.version.replace(chr(10),' ')}")
log(f"๐Ÿ“Œ PLATFORM             : {platform.platform()}")
log(f"๐Ÿ“Œ TORCH VERSION        : {torch.__version__}")
log(f"๐Ÿ“Œ TRANSFORMERS VERSION : {transformers.__version__}")
log(f"๐Ÿ“Œ DIFFUSERS VERSION    : {diffusers.__version__}")
log(f"๐Ÿ“Œ CUDA AVAILABLE       : {torch.cuda.is_available()}")

log_system_stats("AT STARTUP")

if not torch.cuda.is_available():
    raise RuntimeError("โŒ CUDA Required")

device = "cuda"
gpu_id = 0

# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False

log("\n===================================================")
log("๐Ÿง  MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID              : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype           : {torch_dtype}")
log(f"USE_CPU_OFFLOAD       : {USE_CPU_OFFLOAD}")

log_system_stats("BEFORE TRANSFORMER LOAD")


# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
    try:
        img_tensor = pipe.vae.decode(latent)
        img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
        pil_img = T.ToPILImage()(img_tensor[0])
        return pil_img
    except Exception as e:
        log(f"โš ๏ธ Failed to decode latent: {e}")
        return None



# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
    log(f"\n๐Ÿ”๐Ÿ” FULL TRANSFORMER DEBUG DUMP: {name}")
    log("=" * 80)

    try:
        log(f"Model class          : {model.__class__.__name__}")
        log(f"DType                : {getattr(model, 'dtype', 'unknown')}")
        log(f"Device               : {next(model.parameters()).device}")
        log(f"Requires Grad?       : {any(p.requires_grad for p in model.parameters())}")

        # Check quantization
        if hasattr(model, "is_loaded_in_4bit"):
            log(f"4bit Quantization    : {model.is_loaded_in_4bit}")
        if hasattr(model, "is_loaded_in_8bit"):
            log(f"8bit Quantization    : {model.is_loaded_in_8bit}")

        # Find blocks
        candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
        blocks = None
        chosen_attr = None

        for attr in candidates:
            if hasattr(model, attr):
                blocks = getattr(model, attr)
                chosen_attr = attr
                break

        log(f"Block container attr : {chosen_attr}")

        if blocks is None:
            log("โš ๏ธ No valid block container found.")
            return

        if not hasattr(blocks, "__len__"):
            log("โš ๏ธ Blocks exist but not iterable.")
            return

        total = len(blocks)
        log(f"Total Blocks         : {total}")
        log("-" * 80)

        # Inspect first N blocks
        N = min(20, total)
        for i in range(N):
            block = blocks[i]
            log(f"\n๐Ÿงฉ Block [{i}/{total-1}]")
            log(f"Class: {block.__class__.__name__}")

            # Print submodules
            for n, m in block.named_children():
                log(f"  โ”œโ”€ {n}: {m.__class__.__name__}")

            # Print attention related
            if hasattr(block, "attn"):
                attn = block.attn
                log(f"  โ”œโ”€ Attention: {attn.__class__.__name__}")
                log(f"  โ”‚   Heads     : {getattr(attn, 'num_heads', 'unknown')}")
                log(f"  โ”‚   Dim       : {getattr(attn, 'hidden_size', 'unknown')}")
                log(f"  โ”‚   Backend   : {getattr(attn, 'attention_backend', 'unknown')}")

            # Device + dtype info
            try:
                dev = next(block.parameters()).device
                log(f"  โ”œโ”€ Device     : {dev}")
            except StopIteration:
                pass

            try:
                dt = next(block.parameters()).dtype
                log(f"  โ”œโ”€ DType      : {dt}")
            except StopIteration:
                pass

        log("\n๐Ÿ”š END TRANSFORMER DEBUG DUMP")
        log("=" * 80)

    except Exception as e:
        log(f"โŒ ERROR IN INSPECTOR: {e}")
import torch
import time

# ---------- UTILITY ----------
def pretty_header(title):
    log("\n\n" + "=" * 80)
    log(f"๐ŸŽ›๏ธ  {title}")
    log("=" * 80 + "\n")


# ---------- MEMORY ----------
def get_vram(prefix=""):
    try:
        allocated = torch.cuda.memory_allocated() / 1024**2
        reserved = torch.cuda.memory_reserved() / 1024**2
        log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
        log(f"{prefix}Reserved VRAM  : {reserved:.2f} MB")
    except:
        log(f"{prefix}VRAM: CUDA not available")


# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
    pretty_header(f"๐Ÿ”ฌ Inspecting {name}")

    try:
        log(f"๐Ÿ“ฆ Class          : {module.__class__.__name__}")
        log(f"๐Ÿ”ข DType          : {getattr(module, 'dtype', 'unknown')}")
        log(f"๐Ÿ’ป Device         : {next(module.parameters()).device}")
        log(f"๐Ÿงฎ Params         : {sum(p.numel() for p in module.parameters()):,}")

        # Quantization state
        if hasattr(module, "is_loaded_in_4bit"):
            log(f"โš™๏ธ  4-bit QLoRA     : {module.is_loaded_in_4bit}")
        if hasattr(module, "is_loaded_in_8bit"):
            log(f"โš™๏ธ  8-bit load      : {module.is_loaded_in_8bit}")

        # Attention backend (DiT)
        if hasattr(module, "set_attention_backend"):
            try:
                attn = getattr(module, "attention_backend", None)
                log(f"๐Ÿš€ Attention Backend: {attn}")
            except:
                pass

        # Search for blocks
        candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
        blocks = None
        chosen_attr = None

        for attr in candidates:
            if hasattr(module, attr):
                blocks = getattr(module, attr)
                chosen_attr = attr
                break

        log(f"\n๐Ÿ“š Block Container : {chosen_attr}")

        if blocks is None:
            log("โš ๏ธ No block structure found")
            return

        if not hasattr(blocks, "__len__"):
            log("โš ๏ธ Blocks exist but are not iterable")
            return

        total = len(blocks)
        log(f"๐Ÿ”ข Total Blocks   : {total}\n")

        # Inspect first 15 blocks
        N = min(15, total)

        for i in range(N):
            blk = blocks[i]
            log(f"\n๐Ÿงฉ Block [{i}/{total-1}] โ€” {blk.__class__.__name__}")

            for n, m in blk.named_children():
                log(f"   โ”œโ”€ {n:<15} {m.__class__.__name__}")

            # Attention details
            if hasattr(blk, "attn"):
                a = blk.attn
                log(f"   โ”œโ”€ Attention")
                log(f"   โ”‚    Heads    : {getattr(a, 'num_heads', 'unknown')}")
                log(f"   โ”‚    Dim      : {getattr(a, 'hidden_size', 'unknown')}")
                log(f"   โ”‚    Backend  : {getattr(a, 'attention_backend', 'unknown')}")

            # Device / dtype
            try:
                log(f"   โ”œโ”€ Device     : {next(blk.parameters()).device}")
                log(f"   โ”œโ”€ DType      : {next(blk.parameters()).dtype}")
            except StopIteration:
                pass

        get_vram("   โ–ถ ")

    except Exception as e:
        log(f"โŒ Module inspect error: {e}")


# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
    pretty_header("๐Ÿงฉ LoRA ADAPTERS")

    try:
        if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
            log("โš ๏ธ No LoRA system detected.")
            return

        if hasattr(pipe, "adapter_names"):
            names = pipe.adapter_names
            log(f"Available Adapters: {names}")

        if hasattr(pipe, "active_adapters"):
            log(f"Active Adapters   : {pipe.active_adapters}")

        if hasattr(pipe, "lora_scale"):
            log(f"LoRA Scale        : {pipe.lora_scale}")

        # LoRA modules
        if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
            for name, module in pipe.transformer.named_modules():
                if "lora" in name.lower():
                    log(f"   ๐Ÿ”ง LoRA Module: {name}  ({module.__class__.__name__})")

    except Exception as e:
        log(f"โŒ LoRA inspect error: {e}")


# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
    pretty_header("๐Ÿš€ FULL PIPELINE DEBUGGING")

    try:
        log(f"Pipeline Class       : {pipe.__class__.__name__}")
        log(f"Attention Impl       : {getattr(pipe, 'attn_implementation', 'unknown')}")
        log(f"Device               : {pipe.device}")
    except:
        pass

    get_vram("โ–ถ ")

    # Inspect TRANSFORMER
    if hasattr(pipe, "transformer"):
        inspect_module("Transformer", pipe.transformer)

    # Inspect TEXT ENCODER
    if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
        inspect_module("Text Encoder", pipe.text_encoder)

    # Inspect UNET (if ZImage pipeline has it)
    if hasattr(pipe, "unet"):
        inspect_module("UNet", pipe.unet)

    # LoRA adapters
    inspect_loras(pipe)

    pretty_header("๐ŸŽ‰ END DEBUG REPORT")



# ============================================================
# LOAD TRANSFORMER โ€” WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("๐Ÿ”ง LOADING TRANSFORMER BLOCK")
log("===================================================")

log("๐Ÿ“Œ Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")

try:
    quant_cfg = DiffusersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    transformer = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="transformer",
        quantization_config=quant_cfg,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("โœ… Transformer loaded successfully.")

except Exception as e:
    log(f"โŒ Transformer load failed: {e}")
    transformer = None

log_system_stats("AFTER TRANSFORMER LOAD")

if transformer:
    inspect_transformer(transformer, "Transformer")


# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("๐Ÿ”ง LOADING TEXT ENCODER")
log("===================================================")

log_system_stats("START TEXT ENCODER LOAD")

try:
    quant_cfg2 = TransformersBitsAndBytesConfig(
        load_in_4bit=True,
        bnb_4bit_quant_type="nf4",
        bnb_4bit_compute_dtype=torch_dtype,
        bnb_4bit_use_double_quant=True,
    )

    text_encoder = AutoModel.from_pretrained(
        model_id,
        cache_dir=model_cache,
        subfolder="text_encoder",
        quantization_config=quant_cfg2,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    log("โœ… Text encoder loaded successfully.")

except Exception as e:
    log(f"โŒ Text encoder load failed: {e}")
    text_encoder = None

log_system_stats("AFTER TEXT ENCODER LOAD")

if text_encoder:
    inspect_transformer(text_encoder, "Text Encoder")


# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("๐Ÿ”ง BUILDING PIPELINE")
log("===================================================")

log_system_stats("START PIPELINE BUILD")

try:
    pipe = ZImagePipeline.from_pretrained(
        model_id,
        transformer=transformer,
        text_encoder=text_encoder,
        torch_dtype=torch_dtype,
       
    )
    pipe.transformer.set_attention_backend("_flash_3") 
   # pipe.load_lora_weights("bdsqlsz/qinglong_DetailedEyes_Z-Image", weight_name="qinglong_detailedeye_z-imageV2(comfy).safetensors", adapter_name="lora")
    pipe.load_lora_weights("rahul7star/ZImageLora",
                           weight_name="NSFW/doggystyle_pov.safetensors", adapter_name="lora")
    
    pipe.set_adapters(["lora",], adapter_weights=[1.])
    pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
    debug_pipeline(pipe)
  #  pipe.unload_lora_weights()
    pipe.to("cuda")
    log("โœ… Pipeline built successfully.")
    LOGS.append(log)
except Exception as e:
    log(f"โŒ Pipeline build failed: {e}")
    pipe = None

log_system_stats("AFTER PIPELINE BUILD")


# -----------------------------
# Monkey-patch prepare_latents
# -----------------------------
# -----------------------------
# Monkey-patch prepare_latents
# -----------------------------
if pipe is not None:
    original_prepare_latents = pipe.prepare_latents

    def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        result_latents = original_prepare_latents(
            batch_size, num_channels_latents, height, width, dtype, device, generator, latents
        )
        log_msg = f"๐Ÿ”น prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
        if hasattr(self, "_latents_log"):
            self._latents_log.append(log_msg)
        else:
            self._latents_log = [log_msg]
        return result_latents

    pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
else:
    log("โŒ WARNING: Pipe not initialized; skipping prepare_latents patch")


# Apply patch
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)



from PIL import Image
import torch

# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
    try:
        latents = pipe.prepare_latents(
            batch_size=1,
            num_channels=getattr(pipe.unet, "in_channels", 4),
            height=height,
            width=width,
            dtype=torch.float32,
            device=device,
            generator=generator
        )
        LOGS.append(f"๐Ÿ”น Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
        return latents
    except Exception as e:
        LOGS.append(f"โš ๏ธ Latent extraction failed: {e}")
        return torch.randn((1, 4, height // 8, width // 8), generator=generator, device=device)


# --------------------------
# Main generation function
# --------------------------
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
    LOGS = []
    latents = None
    image = None
    gallery = []

    # placeholder image if all fails
    placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
    print(prompt)

    try:
        generator = torch.Generator(device).manual_seed(int(seed))

        # -------------------------------
        # Try advanced latent extraction
        # -------------------------------
        try:
            latents = safe_get_latents(pipe, height, width, generator, device, LOGS)

            output = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=steps,
                guidance_scale=guidance_scale,
                generator=generator,
                latents=latents
            )

            image = output.images[0]
            gallery = [image]
            LOGS.extend(getattr(pipe, "_latents_log", []))
            LOGS.append("โœ… Advanced latent pipeline succeeded.")

        except Exception as e:
            LOGS.append(f"โš ๏ธ Latent mode failed: {e}")
            LOGS.append("๐Ÿ” Switching to standard pipeline...")

            try:
                output = pipe(
                    prompt=prompt,
                    height=height,
                    width=width,
                    num_inference_steps=steps,
                    guidance_scale=guidance_scale,
                    generator=generator,
                )
                image = output.images[0]
                gallery = [image]
                LOGS.append("โœ… Standard pipeline succeeded.")

            except Exception as e2:
                LOGS.append(f"โŒ Standard pipeline failed: {e2}")
                image = placeholder
                gallery = [image]

        return image, gallery, LOGS

    except Exception as e:
        LOGS.append(f"โŒ Total failure: {e}")
        return placeholder, [placeholder], LOGS
@spaces.GPU
def generate_image_backup(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
    """
    Robust dual pipeline:
    - Advanced latent generation first
    - Fallback to standard pipeline if latent fails
    - Always returns final image
    - Returns gallery (latents or final image) and logs
    """

    LOGS = []
    image = None
    latents = None
    gallery = []

    # Keep a placeholder original image (white) in case everything fails
    original_image = Image.new("RGB", (width, height), color=(255, 255, 255))

    try:
        generator = torch.Generator(device).manual_seed(int(seed))

        # -------------------------------
        # Try advanced latent generation
        # -------------------------------
        try:
            batch_size = 1
            num_channels_latents = getattr(pipe.unet, "in_channels", None)
            if num_channels_latents is None:
                raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline")

            latents = pipe.prepare_latents(
                batch_size=batch_size,
                num_channels=num_channels_latents,
                height=height,
                width=width,
                dtype=torch.float32,
                device=device,
                generator=generator
            )
            LOGS.append(f"โœ… Latents prepared: {latents.shape}")

            output = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=steps,
                guidance_scale=guidance_scale,
                generator=generator,
                latents=latents
            )
            image = output.images[0]
            gallery = [image] if image else []

            LOGS.append("โœ… Advanced latent generation succeeded.")

        # -------------------------------
        # Fallback to standard pipeline
        # -------------------------------
        except Exception as e_latent:
            LOGS.append(f"โš ๏ธ Advanced latent generation failed: {e_latent}")
            LOGS.append("๐Ÿ” Falling back to standard pipeline...")

            try:
                output = pipe(
                    prompt=prompt,
                    height=height,
                    width=width,
                    num_inference_steps=steps,
                    guidance_scale=guidance_scale,
                    generator=generator
                )
                image = output.images[0]
                gallery = [image] if image else []
                LOGS.append("โœ… Standard pipeline generation succeeded.")
            except Exception as e_standard:
                LOGS.append(f"โŒ Standard pipeline generation failed: {e_standard}")
                image = original_image  # Always return some image
                gallery = [image]

        # -------------------------------
        # Return all 3 outputs
        # -------------------------------
        return image, gallery, LOGS

    except Exception as e:
        LOGS.append(f"โŒ Inference failed entirely: {e}")
        return original_image, [original_image], LOGS

# ============================================================
# UI
# ============================================================

# with gr.Blocks(title="Z-Image- experiment - dont run")as demo:
#   gr.Markdown("# **๐Ÿš€ do not run Z-Image-Turbo โ€” Final Image & Latents**")


#   with gr.Row():
#     with gr.Column(scale=1):
#         prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
#         height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
#         width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
#         steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
#         seed = gr.Number(value=42, label="Seed")
#         run_btn = gr.Button("Generate Image")

#     with gr.Column(scale=1):
#         final_image = gr.Image(label="Final Image")
#         latent_gallery = gr.Gallery(
#            label="Latent Steps",
#                 columns=4,
#               height=256,
#              preview=True
#               )

#         logs_box = gr.Textbox(label="Logs", lines=15)

#     run_btn.click(
#       generate_image,
#       inputs=[prompt, height, width, steps, seed],
#       outputs=[final_image, latent_gallery, logs_box]
#      )

with gr.Blocks(title="Z-Image-Turbo") as demo:
    with gr.Tabs():
        with gr.TabItem("Image & Latents"):
            with gr.Row():
                with gr.Column(scale=1):
                    prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
                    height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
                    width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
                    steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
                    seed = gr.Number(value=42, label="Seed")
                    run_btn = gr.Button("Generate Image")

                with gr.Column(scale=1):
                    final_image = gr.Image(label="Final Image")
                    latent_gallery = gr.Gallery(
                        label="Latent Steps", columns=4, height=256, preview=True
                    )

        with gr.TabItem("Logs"):
            logs_box = gr.Textbox(label="All Logs", lines=25)

    # Wire the button AFTER all components exist
    run_btn.click(
        generate_image,
        inputs=[prompt, height, width, steps, seed],
        outputs=[final_image, latent_gallery, logs_box]
    )






demo.launch()