Spaces:
Paused
Paused
File size: 24,791 Bytes
6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 2e8da0d 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 9d1bc12 a42df2c 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 6d29b78 9d1bc12 02db00d 9d1bc12 02db00d 361a3e8 8826601 a42df2c 121aab3 8826601 9d1bc12 8c137f7 9d1bc12 6d29b78 9d1bc12 6d29b78 f99be6b 02db00d f99be6b 9d1bc12 81d6159 8c054ac c9f04dd a038035 c9f04dd a038035 c9f04dd a038035 c9f04dd a038035 c9f04dd 2314c25 c9f04dd 2314c25 2533111 2314c25 c9f04dd 2314c25 f99be6b 2314c25 6d29b78 2314c25 81d6159 8c054ac 81d6159 8c054ac 8ee0e91 ea621bd 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 81d6159 8c054ac 8ee0e91 81d6159 8c054ac 6d29b78 9d1bc12 6d29b78 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 145ce23 f99be6b 8024c78 f99be6b 145ce23 25905dd 6d29b78 9d1bc12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 |
import torch
import spaces
import gradio as gr
import sys
import platform
import diffusers
import transformers
import psutil
import os
import time
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import ZImagePipeline, AutoModel
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
latent_history = []
# ============================================================
# LOGGING BUFFER
# ============================================================
LOGS = ""
def log(msg):
global LOGS
print(msg)
LOGS += msg + "\n"
return msg
# ============================================================
# SYSTEM METRICS โ LIVE GPU + CPU MONITORING
# ============================================================
def log_system_stats(tag=""):
try:
log(f"\n===== ๐ฅ SYSTEM STATS {tag} =====")
# ============= GPU STATS =============
if torch.cuda.is_available():
allocated = torch.cuda.memory_allocated(0) / 1e9
reserved = torch.cuda.memory_reserved(0) / 1e9
total = torch.cuda.get_device_properties(0).total_memory / 1e9
free = total - allocated
log(f"๐ GPU Total : {total:.2f} GB")
log(f"๐ GPU Allocated : {allocated:.2f} GB")
log(f"๐ GPU Reserved : {reserved:.2f} GB")
log(f"๐ GPU Free : {free:.2f} GB")
# ============= CPU STATS ============
cpu = psutil.cpu_percent()
ram_used = psutil.virtual_memory().used / 1e9
ram_total = psutil.virtual_memory().total / 1e9
log(f"๐ง CPU Usage : {cpu}%")
log(f"๐ง RAM Used : {ram_used:.2f} GB / {ram_total:.2f} GB")
except Exception as e:
log(f"โ ๏ธ Failed to log system stats: {e}")
# ============================================================
# ENVIRONMENT INFO
# ============================================================
log("===================================================")
log("๐ Z-IMAGE-TURBO DEBUGGING + LIVE METRIC LOGGER")
log("===================================================\n")
log(f"๐ PYTHON VERSION : {sys.version.replace(chr(10),' ')}")
log(f"๐ PLATFORM : {platform.platform()}")
log(f"๐ TORCH VERSION : {torch.__version__}")
log(f"๐ TRANSFORMERS VERSION : {transformers.__version__}")
log(f"๐ DIFFUSERS VERSION : {diffusers.__version__}")
log(f"๐ CUDA AVAILABLE : {torch.cuda.is_available()}")
log_system_stats("AT STARTUP")
if not torch.cuda.is_available():
raise RuntimeError("โ CUDA Required")
device = "cuda"
gpu_id = 0
# ============================================================
# MODEL SETTINGS
# ============================================================
model_cache = "./weights/"
model_id = "Tongyi-MAI/Z-Image-Turbo"
torch_dtype = torch.bfloat16
USE_CPU_OFFLOAD = False
log("\n===================================================")
log("๐ง MODEL CONFIGURATION")
log("===================================================")
log(f"Model ID : {model_id}")
log(f"Model Cache Directory : {model_cache}")
log(f"torch_dtype : {torch_dtype}")
log(f"USE_CPU_OFFLOAD : {USE_CPU_OFFLOAD}")
log_system_stats("BEFORE TRANSFORMER LOAD")
# ============================================================
# FUNCTION TO CONVERT LATENTS TO IMAGE
# ============================================================
def latent_to_image(latent):
try:
img_tensor = pipe.vae.decode(latent)
img_tensor = (img_tensor / 2 + 0.5).clamp(0, 1)
pil_img = T.ToPILImage()(img_tensor[0])
return pil_img
except Exception as e:
log(f"โ ๏ธ Failed to decode latent: {e}")
return None
# ============================================================
# SAFE TRANSFORMER INSPECTION
# ============================================================
def inspect_transformer(model, name):
log(f"\n๐๐ FULL TRANSFORMER DEBUG DUMP: {name}")
log("=" * 80)
try:
log(f"Model class : {model.__class__.__name__}")
log(f"DType : {getattr(model, 'dtype', 'unknown')}")
log(f"Device : {next(model.parameters()).device}")
log(f"Requires Grad? : {any(p.requires_grad for p in model.parameters())}")
# Check quantization
if hasattr(model, "is_loaded_in_4bit"):
log(f"4bit Quantization : {model.is_loaded_in_4bit}")
if hasattr(model, "is_loaded_in_8bit"):
log(f"8bit Quantization : {model.is_loaded_in_8bit}")
# Find blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(model, attr):
blocks = getattr(model, attr)
chosen_attr = attr
break
log(f"Block container attr : {chosen_attr}")
if blocks is None:
log("โ ๏ธ No valid block container found.")
return
if not hasattr(blocks, "__len__"):
log("โ ๏ธ Blocks exist but not iterable.")
return
total = len(blocks)
log(f"Total Blocks : {total}")
log("-" * 80)
# Inspect first N blocks
N = min(20, total)
for i in range(N):
block = blocks[i]
log(f"\n๐งฉ Block [{i}/{total-1}]")
log(f"Class: {block.__class__.__name__}")
# Print submodules
for n, m in block.named_children():
log(f" โโ {n}: {m.__class__.__name__}")
# Print attention related
if hasattr(block, "attn"):
attn = block.attn
log(f" โโ Attention: {attn.__class__.__name__}")
log(f" โ Heads : {getattr(attn, 'num_heads', 'unknown')}")
log(f" โ Dim : {getattr(attn, 'hidden_size', 'unknown')}")
log(f" โ Backend : {getattr(attn, 'attention_backend', 'unknown')}")
# Device + dtype info
try:
dev = next(block.parameters()).device
log(f" โโ Device : {dev}")
except StopIteration:
pass
try:
dt = next(block.parameters()).dtype
log(f" โโ DType : {dt}")
except StopIteration:
pass
log("\n๐ END TRANSFORMER DEBUG DUMP")
log("=" * 80)
except Exception as e:
log(f"โ ERROR IN INSPECTOR: {e}")
import torch
import time
# ---------- UTILITY ----------
def pretty_header(title):
log("\n\n" + "=" * 80)
log(f"๐๏ธ {title}")
log("=" * 80 + "\n")
# ---------- MEMORY ----------
def get_vram(prefix=""):
try:
allocated = torch.cuda.memory_allocated() / 1024**2
reserved = torch.cuda.memory_reserved() / 1024**2
log(f"{prefix}Allocated VRAM : {allocated:.2f} MB")
log(f"{prefix}Reserved VRAM : {reserved:.2f} MB")
except:
log(f"{prefix}VRAM: CUDA not available")
# ---------- MODULE INSPECT ----------
def inspect_module(name, module):
pretty_header(f"๐ฌ Inspecting {name}")
try:
log(f"๐ฆ Class : {module.__class__.__name__}")
log(f"๐ข DType : {getattr(module, 'dtype', 'unknown')}")
log(f"๐ป Device : {next(module.parameters()).device}")
log(f"๐งฎ Params : {sum(p.numel() for p in module.parameters()):,}")
# Quantization state
if hasattr(module, "is_loaded_in_4bit"):
log(f"โ๏ธ 4-bit QLoRA : {module.is_loaded_in_4bit}")
if hasattr(module, "is_loaded_in_8bit"):
log(f"โ๏ธ 8-bit load : {module.is_loaded_in_8bit}")
# Attention backend (DiT)
if hasattr(module, "set_attention_backend"):
try:
attn = getattr(module, "attention_backend", None)
log(f"๐ Attention Backend: {attn}")
except:
pass
# Search for blocks
candidates = ["transformer_blocks", "blocks", "layers", "encoder", "model"]
blocks = None
chosen_attr = None
for attr in candidates:
if hasattr(module, attr):
blocks = getattr(module, attr)
chosen_attr = attr
break
log(f"\n๐ Block Container : {chosen_attr}")
if blocks is None:
log("โ ๏ธ No block structure found")
return
if not hasattr(blocks, "__len__"):
log("โ ๏ธ Blocks exist but are not iterable")
return
total = len(blocks)
log(f"๐ข Total Blocks : {total}\n")
# Inspect first 15 blocks
N = min(15, total)
for i in range(N):
blk = blocks[i]
log(f"\n๐งฉ Block [{i}/{total-1}] โ {blk.__class__.__name__}")
for n, m in blk.named_children():
log(f" โโ {n:<15} {m.__class__.__name__}")
# Attention details
if hasattr(blk, "attn"):
a = blk.attn
log(f" โโ Attention")
log(f" โ Heads : {getattr(a, 'num_heads', 'unknown')}")
log(f" โ Dim : {getattr(a, 'hidden_size', 'unknown')}")
log(f" โ Backend : {getattr(a, 'attention_backend', 'unknown')}")
# Device / dtype
try:
log(f" โโ Device : {next(blk.parameters()).device}")
log(f" โโ DType : {next(blk.parameters()).dtype}")
except StopIteration:
pass
get_vram(" โถ ")
except Exception as e:
log(f"โ Module inspect error: {e}")
# ---------- LORA INSPECTION ----------
def inspect_loras(pipe):
pretty_header("๐งฉ LoRA ADAPTERS")
try:
if not hasattr(pipe, "lora_state_dict") and not hasattr(pipe, "adapter_names"):
log("โ ๏ธ No LoRA system detected.")
return
if hasattr(pipe, "adapter_names"):
names = pipe.adapter_names
log(f"Available Adapters: {names}")
if hasattr(pipe, "active_adapters"):
log(f"Active Adapters : {pipe.active_adapters}")
if hasattr(pipe, "lora_scale"):
log(f"LoRA Scale : {pipe.lora_scale}")
# LoRA modules
if hasattr(pipe, "transformer") and hasattr(pipe.transformer, "modules"):
for name, module in pipe.transformer.named_modules():
if "lora" in name.lower():
log(f" ๐ง LoRA Module: {name} ({module.__class__.__name__})")
except Exception as e:
log(f"โ LoRA inspect error: {e}")
# ---------- PIPELINE INSPECTOR ----------
def debug_pipeline(pipe):
pretty_header("๐ FULL PIPELINE DEBUGGING")
try:
log(f"Pipeline Class : {pipe.__class__.__name__}")
log(f"Attention Impl : {getattr(pipe, 'attn_implementation', 'unknown')}")
log(f"Device : {pipe.device}")
except:
pass
get_vram("โถ ")
# Inspect TRANSFORMER
if hasattr(pipe, "transformer"):
inspect_module("Transformer", pipe.transformer)
# Inspect TEXT ENCODER
if hasattr(pipe, "text_encoder") and pipe.text_encoder is not None:
inspect_module("Text Encoder", pipe.text_encoder)
# Inspect UNET (if ZImage pipeline has it)
if hasattr(pipe, "unet"):
inspect_module("UNet", pipe.unet)
# LoRA adapters
inspect_loras(pipe)
pretty_header("๐ END DEBUG REPORT")
# ============================================================
# LOAD TRANSFORMER โ WITH LIVE STATS
# ============================================================
log("\n===================================================")
log("๐ง LOADING TRANSFORMER BLOCK")
log("===================================================")
log("๐ Logging memory before load:")
log_system_stats("START TRANSFORMER LOAD")
try:
quant_cfg = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
transformer = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="transformer",
quantization_config=quant_cfg,
torch_dtype=torch_dtype,
device_map=device,
)
log("โ
Transformer loaded successfully.")
except Exception as e:
log(f"โ Transformer load failed: {e}")
transformer = None
log_system_stats("AFTER TRANSFORMER LOAD")
if transformer:
inspect_transformer(transformer, "Transformer")
# ============================================================
# LOAD TEXT ENCODER
# ============================================================
log("\n===================================================")
log("๐ง LOADING TEXT ENCODER")
log("===================================================")
log_system_stats("START TEXT ENCODER LOAD")
try:
quant_cfg2 = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype,
bnb_4bit_use_double_quant=True,
)
text_encoder = AutoModel.from_pretrained(
model_id,
cache_dir=model_cache,
subfolder="text_encoder",
quantization_config=quant_cfg2,
torch_dtype=torch_dtype,
device_map=device,
)
log("โ
Text encoder loaded successfully.")
except Exception as e:
log(f"โ Text encoder load failed: {e}")
text_encoder = None
log_system_stats("AFTER TEXT ENCODER LOAD")
if text_encoder:
inspect_transformer(text_encoder, "Text Encoder")
# ============================================================
# BUILD PIPELINE
# ============================================================
log("\n===================================================")
log("๐ง BUILDING PIPELINE")
log("===================================================")
log_system_stats("START PIPELINE BUILD")
try:
pipe = ZImagePipeline.from_pretrained(
model_id,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype,
)
pipe.transformer.set_attention_backend("_flash_3")
# pipe.load_lora_weights("bdsqlsz/qinglong_DetailedEyes_Z-Image", weight_name="qinglong_detailedeye_z-imageV2(comfy).safetensors", adapter_name="lora")
pipe.load_lora_weights("rahul7star/ZImageLora",
weight_name="NSFW/doggystyle_pov.safetensors", adapter_name="lora")
pipe.set_adapters(["lora",], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["lora"], lora_scale=0.75)
debug_pipeline(pipe)
# pipe.unload_lora_weights()
pipe.to("cuda")
log("โ
Pipeline built successfully.")
LOGS.append(log)
except Exception as e:
log(f"โ Pipeline build failed: {e}")
pipe = None
log_system_stats("AFTER PIPELINE BUILD")
# -----------------------------
# Monkey-patch prepare_latents
# -----------------------------
# -----------------------------
# Monkey-patch prepare_latents
# -----------------------------
if pipe is not None:
original_prepare_latents = pipe.prepare_latents
def logged_prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
result_latents = original_prepare_latents(
batch_size, num_channels_latents, height, width, dtype, device, generator, latents
)
log_msg = f"๐น prepare_latents called | shape={result_latents.shape}, dtype={result_latents.dtype}, device={result_latents.device}"
if hasattr(self, "_latents_log"):
self._latents_log.append(log_msg)
else:
self._latents_log = [log_msg]
return result_latents
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
else:
log("โ WARNING: Pipe not initialized; skipping prepare_latents patch")
# Apply patch
pipe.prepare_latents = logged_prepare_latents.__get__(pipe)
from PIL import Image
import torch
# --------------------------
# Helper: Safe latent extractor
# --------------------------
def safe_get_latents(pipe, height, width, generator, device, LOGS):
try:
latents = pipe.prepare_latents(
batch_size=1,
num_channels=getattr(pipe.unet, "in_channels", 4),
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator
)
LOGS.append(f"๐น Latents shape: {latents.shape}, dtype: {latents.dtype}, device: {latents.device}")
return latents
except Exception as e:
LOGS.append(f"โ ๏ธ Latent extraction failed: {e}")
return torch.randn((1, 4, height // 8, width // 8), generator=generator, device=device)
# --------------------------
# Main generation function
# --------------------------
@spaces.GPU
def generate_image(prompt, height, width, steps, seed, guidance_scale=0.0):
LOGS = []
latents = None
image = None
gallery = []
# placeholder image if all fails
placeholder = Image.new("RGB", (width, height), color=(255, 255, 255))
print(prompt)
try:
generator = torch.Generator(device).manual_seed(int(seed))
# -------------------------------
# Try advanced latent extraction
# -------------------------------
try:
latents = safe_get_latents(pipe, height, width, generator, device, LOGS)
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents
)
image = output.images[0]
gallery = [image]
LOGS.extend(getattr(pipe, "_latents_log", []))
LOGS.append("โ
Advanced latent pipeline succeeded.")
except Exception as e:
LOGS.append(f"โ ๏ธ Latent mode failed: {e}")
LOGS.append("๐ Switching to standard pipeline...")
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
)
image = output.images[0]
gallery = [image]
LOGS.append("โ
Standard pipeline succeeded.")
except Exception as e2:
LOGS.append(f"โ Standard pipeline failed: {e2}")
image = placeholder
gallery = [image]
return image, gallery, LOGS
except Exception as e:
LOGS.append(f"โ Total failure: {e}")
return placeholder, [placeholder], LOGS
@spaces.GPU
def generate_image_backup(prompt, height, width, steps, seed, guidance_scale=0.0, return_latents=False):
"""
Robust dual pipeline:
- Advanced latent generation first
- Fallback to standard pipeline if latent fails
- Always returns final image
- Returns gallery (latents or final image) and logs
"""
LOGS = []
image = None
latents = None
gallery = []
# Keep a placeholder original image (white) in case everything fails
original_image = Image.new("RGB", (width, height), color=(255, 255, 255))
try:
generator = torch.Generator(device).manual_seed(int(seed))
# -------------------------------
# Try advanced latent generation
# -------------------------------
try:
batch_size = 1
num_channels_latents = getattr(pipe.unet, "in_channels", None)
if num_channels_latents is None:
raise AttributeError("pipe.unet.in_channels not found, fallback to standard pipeline")
latents = pipe.prepare_latents(
batch_size=batch_size,
num_channels=num_channels_latents,
height=height,
width=width,
dtype=torch.float32,
device=device,
generator=generator
)
LOGS.append(f"โ
Latents prepared: {latents.shape}")
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator,
latents=latents
)
image = output.images[0]
gallery = [image] if image else []
LOGS.append("โ
Advanced latent generation succeeded.")
# -------------------------------
# Fallback to standard pipeline
# -------------------------------
except Exception as e_latent:
LOGS.append(f"โ ๏ธ Advanced latent generation failed: {e_latent}")
LOGS.append("๐ Falling back to standard pipeline...")
try:
output = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=guidance_scale,
generator=generator
)
image = output.images[0]
gallery = [image] if image else []
LOGS.append("โ
Standard pipeline generation succeeded.")
except Exception as e_standard:
LOGS.append(f"โ Standard pipeline generation failed: {e_standard}")
image = original_image # Always return some image
gallery = [image]
# -------------------------------
# Return all 3 outputs
# -------------------------------
return image, gallery, LOGS
except Exception as e:
LOGS.append(f"โ Inference failed entirely: {e}")
return original_image, [original_image], LOGS
# ============================================================
# UI
# ============================================================
# with gr.Blocks(title="Z-Image- experiment - dont run")as demo:
# gr.Markdown("# **๐ do not run Z-Image-Turbo โ Final Image & Latents**")
# with gr.Row():
# with gr.Column(scale=1):
# prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
# height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
# width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
# steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
# seed = gr.Number(value=42, label="Seed")
# run_btn = gr.Button("Generate Image")
# with gr.Column(scale=1):
# final_image = gr.Image(label="Final Image")
# latent_gallery = gr.Gallery(
# label="Latent Steps",
# columns=4,
# height=256,
# preview=True
# )
# logs_box = gr.Textbox(label="Logs", lines=15)
# run_btn.click(
# generate_image,
# inputs=[prompt, height, width, steps, seed],
# outputs=[final_image, latent_gallery, logs_box]
# )
with gr.Blocks(title="Z-Image-Turbo") as demo:
with gr.Tabs():
with gr.TabItem("Image & Latents"):
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(label="Prompt", value="boat in Ocean")
height = gr.Slider(256, 2048, value=1024, step=8, label="Height")
width = gr.Slider(256, 2048, value=1024, step=8, label="Width")
steps = gr.Slider(1, 50, value=20, step=1, label="Inference Steps")
seed = gr.Number(value=42, label="Seed")
run_btn = gr.Button("Generate Image")
with gr.Column(scale=1):
final_image = gr.Image(label="Final Image")
latent_gallery = gr.Gallery(
label="Latent Steps", columns=4, height=256, preview=True
)
with gr.TabItem("Logs"):
logs_box = gr.Textbox(label="All Logs", lines=25)
# Wire the button AFTER all components exist
run_btn.click(
generate_image,
inputs=[prompt, height, width, steps, seed],
outputs=[final_image, latent_gallery, logs_box]
)
demo.launch() |