Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,48 +1,26 @@
|
|
| 1 |
-
import
|
| 2 |
import google.generativeai as genai
|
| 3 |
-
from transformers import AutoModel, AutoTokenizer
|
| 4 |
-
from pdf2image import convert_from_path
|
| 5 |
-
import torch
|
| 6 |
-
import os
|
| 7 |
-
import os
|
| 8 |
-
import subprocess
|
| 9 |
import streamlit as st
|
| 10 |
-
import google.generativeai as genai
|
| 11 |
-
from transformers import AutoModel, AutoTokenizer
|
| 12 |
-
from pdf2image import convert_from_path
|
| 13 |
-
import torch
|
| 14 |
-
import os
|
| 15 |
-
# Ensure Poppler is installed
|
| 16 |
-
poppler_path = "/usr/bin"
|
| 17 |
-
|
| 18 |
-
# Load the OCR model
|
| 19 |
-
tokenizer = AutoTokenizer.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True)
|
| 20 |
-
model = AutoModel.from_pretrained("ucaslcl/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True,
|
| 21 |
-
device_map="cuda" if torch.cuda.is_available() else "cpu",
|
| 22 |
-
use_safetensors=True, pad_token_id=tokenizer.eos_token_id).eval()
|
| 23 |
|
| 24 |
def extract_text_from_pdf(pdf_path):
|
| 25 |
-
"""
|
| 26 |
text = ""
|
| 27 |
try:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
image.save(image_path, "PNG")
|
| 32 |
-
extracted_text = model.chat(tokenizer, image_path, ocr_type="ocr")
|
| 33 |
-
text += extracted_text + "\n"
|
| 34 |
-
os.remove(image_path) # Clean up the temporary image file
|
| 35 |
except Exception as e:
|
| 36 |
-
st.error(f"Error
|
| 37 |
return text
|
| 38 |
|
| 39 |
def analyze_health_data(text):
|
| 40 |
"""Analyzes extracted text using Google Generative AI (Free Tier API)."""
|
| 41 |
try:
|
| 42 |
-
|
| 43 |
-
|
|
|
|
| 44 |
response = model.generate_content(
|
| 45 |
-
f"Analyze this
|
| 46 |
)
|
| 47 |
return response.text
|
| 48 |
except Exception as e:
|
|
@@ -51,18 +29,12 @@ def analyze_health_data(text):
|
|
| 51 |
def main():
|
| 52 |
st.title("Health Report Analyzer")
|
| 53 |
uploaded_file = st.file_uploader("Upload your health report (PDF)", type=["pdf"])
|
| 54 |
-
|
| 55 |
if uploaded_file is not None:
|
| 56 |
-
|
| 57 |
-
with open(pdf_path, "wb") as f:
|
| 58 |
f.write(uploaded_file.getbuffer())
|
| 59 |
-
|
| 60 |
-
with st.spinner("Extracting text from the report..."):
|
| 61 |
-
extracted_text = extract_text_from_pdf(pdf_path)
|
| 62 |
-
|
| 63 |
st.subheader("Extracted Report Text:")
|
| 64 |
st.text_area("Extracted Text", extracted_text[:1000], height=200)
|
| 65 |
-
|
| 66 |
if st.button("Analyze Report"):
|
| 67 |
with st.spinner("Analyzing..."):
|
| 68 |
analysis = analyze_health_data(extracted_text)
|
|
|
|
| 1 |
+
import fitz # PyMuPDF
|
| 2 |
import google.generativeai as genai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def extract_text_from_pdf(pdf_path):
|
| 6 |
+
"""Extracts text from a PDF file."""
|
| 7 |
text = ""
|
| 8 |
try:
|
| 9 |
+
with fitz.open(pdf_path) as doc:
|
| 10 |
+
for page in doc:
|
| 11 |
+
text += page.get_text("text") + "\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
except Exception as e:
|
| 13 |
+
st.error(f"Error reading PDF: {e}")
|
| 14 |
return text
|
| 15 |
|
| 16 |
def analyze_health_data(text):
|
| 17 |
"""Analyzes extracted text using Google Generative AI (Free Tier API)."""
|
| 18 |
try:
|
| 19 |
+
# Get a free API key from Google AI Studio: https://aistudio.google.com/
|
| 20 |
+
genai.configure(api_key="AIzaSyAY6ZYxOzVV5N7mBZzDJ96WEPJGfuFx-mU") # Replace with free API key
|
| 21 |
+
model = genai.GenerativeModel("gemini-pro") # Choose appropriate model
|
| 22 |
response = model.generate_content(
|
| 23 |
+
f"Analyze this blood report and provide trends, risks, and health suggestions:\n{text}"
|
| 24 |
)
|
| 25 |
return response.text
|
| 26 |
except Exception as e:
|
|
|
|
| 29 |
def main():
|
| 30 |
st.title("Health Report Analyzer")
|
| 31 |
uploaded_file = st.file_uploader("Upload your health report (PDF)", type=["pdf"])
|
|
|
|
| 32 |
if uploaded_file is not None:
|
| 33 |
+
with open("temp.pdf", "wb") as f:
|
|
|
|
| 34 |
f.write(uploaded_file.getbuffer())
|
| 35 |
+
extracted_text = extract_text_from_pdf("temp.pdf")
|
|
|
|
|
|
|
|
|
|
| 36 |
st.subheader("Extracted Report Text:")
|
| 37 |
st.text_area("Extracted Text", extracted_text[:1000], height=200)
|
|
|
|
| 38 |
if st.button("Analyze Report"):
|
| 39 |
with st.spinner("Analyzing..."):
|
| 40 |
analysis = analyze_health_data(extracted_text)
|