Unit4-GAIA / agent.py
Romain Lembo
Add combine_images tool for combining multiple images into collages or stacks
72e871e
"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
from langchain_litellm import ChatLiteLLM
# Tools
from tools.add import add
from tools.analyze_csv_file import analyze_csv_file
from tools.analyze_excel_file import analyze_excel_file
from tools.arvix_search import arvix_search
from tools.combine_images import combine_images
from tools.divide import divide
from tools.download_file import download_file
from tools.draw_on_image import draw_on_image
from tools.execute_code_multilang import execute_code_multilang
from tools.extract_text_from_image import extract_text_from_image
from tools.generate_image import generate_image
from tools.get_image_properties import get_image_properties
from tools.modulus import modulus
from tools.multiply import multiply
from tools.power import power
from tools.python_code_parser import python_code_parser
from tools.save_read_file import save_read_file
from tools.set_image_properties import set_image_properties
from tools.square_root import square_root
from tools.subtract import subtract
from tools.web_search import web_search
from tools.wiki_search import wiki_search
load_dotenv()
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
supabase: Client = create_client(
os.environ.get("SUPABASE_URL"),
os.environ.get("SUPABASE_SERVICE_KEY")
)
vector_store = SupabaseVectorStore(
client=supabase,
embedding= embeddings,
table_name="documents",
query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
retriever=vector_store.as_retriever(),
name="Question Search",
description="A tool to retrieve similar questions from a vector store.",
)
tools = [
add,
analyze_csv_file,
analyze_excel_file,
arvix_search,
combine_images,
divide,
download_file,
draw_on_image,
execute_code_multilang,
extract_text_from_image,
generate_image,
get_image_properties,
modulus,
multiply,
power,
python_code_parser,
save_read_file,
set_image_properties,
square_root,
subtract,
web_search,
wiki_search,
]
# Build graph function
def build_graph(provider: str = "google"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(
model="gemini-2.0-flash",
temperature=0,
generation_config={
"temperature": 0.0,
"max_output_tokens": 2000,
"candidate_count": 1,
}
)
elif provider == "groq":
# Groq https://console.groq.com/docs/models
llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
elif provider == "huggingface":
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
repo_id="mistralai/Mistral-7B-Instruct-v0.2",
temperature=0,
# Other models to try:
# "meta-llama/Llama-2-7b-chat-hf"
# "google/gemma-7b-it"
# "mosaicml/mpt-7b-instruct"
# "tiiuae/falcon-7b-instruct"
token=os.environ.get("HF_TOKEN"),
)
)
elif provider == "litellm":
# HuggingFace Embeddings
llm = ChatLiteLLM(
model_id="ollama_chat/qwen2:7b",
api_base="http://127.0.0.1:11434",
num_ctx=8192,
)
else:
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
def retriever(state: MessagesState):
"""Retriever node"""
similar_question = vector_store.similarity_search(state["messages"][0].content)
if similar_question:
content = f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}"
example_msg = HumanMessage(content=content)
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
else:
return {"messages": [sys_msg] + state["messages"]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of Eiffel Tower first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph()
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print()