Spaces:
Build error
Build error
| """LangGraph Agent""" | |
| import os | |
| from dotenv import load_dotenv | |
| from langgraph.graph import START, StateGraph, MessagesState | |
| from langgraph.prebuilt import tools_condition | |
| from langgraph.prebuilt import ToolNode | |
| from langchain_google_genai import ChatGoogleGenerativeAI | |
| from langchain_groq import ChatGroq | |
| from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings | |
| from langchain_community.vectorstores import SupabaseVectorStore | |
| from langchain_core.messages import SystemMessage, HumanMessage | |
| from langchain.tools.retriever import create_retriever_tool | |
| from supabase.client import Client, create_client | |
| from langchain_litellm import ChatLiteLLM | |
| # Tools | |
| from tools.add import add | |
| from tools.analyze_csv_file import analyze_csv_file | |
| from tools.analyze_excel_file import analyze_excel_file | |
| from tools.arvix_search import arvix_search | |
| from tools.combine_images import combine_images | |
| from tools.divide import divide | |
| from tools.download_file import download_file | |
| from tools.draw_on_image import draw_on_image | |
| from tools.execute_code_multilang import execute_code_multilang | |
| from tools.extract_text_from_image import extract_text_from_image | |
| from tools.generate_image import generate_image | |
| from tools.get_image_properties import get_image_properties | |
| from tools.modulus import modulus | |
| from tools.multiply import multiply | |
| from tools.power import power | |
| from tools.python_code_parser import python_code_parser | |
| from tools.save_read_file import save_read_file | |
| from tools.set_image_properties import set_image_properties | |
| from tools.square_root import square_root | |
| from tools.subtract import subtract | |
| from tools.web_search import web_search | |
| from tools.wiki_search import wiki_search | |
| load_dotenv() | |
| # load the system prompt from the file | |
| with open("system_prompt.txt", "r", encoding="utf-8") as f: | |
| system_prompt = f.read() | |
| # System message | |
| sys_msg = SystemMessage(content=system_prompt) | |
| # build a retriever | |
| embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 | |
| supabase: Client = create_client( | |
| os.environ.get("SUPABASE_URL"), | |
| os.environ.get("SUPABASE_SERVICE_KEY") | |
| ) | |
| vector_store = SupabaseVectorStore( | |
| client=supabase, | |
| embedding= embeddings, | |
| table_name="documents", | |
| query_name="match_documents_langchain", | |
| ) | |
| create_retriever_tool = create_retriever_tool( | |
| retriever=vector_store.as_retriever(), | |
| name="Question Search", | |
| description="A tool to retrieve similar questions from a vector store.", | |
| ) | |
| tools = [ | |
| add, | |
| analyze_csv_file, | |
| analyze_excel_file, | |
| arvix_search, | |
| combine_images, | |
| divide, | |
| download_file, | |
| draw_on_image, | |
| execute_code_multilang, | |
| extract_text_from_image, | |
| generate_image, | |
| get_image_properties, | |
| modulus, | |
| multiply, | |
| power, | |
| python_code_parser, | |
| save_read_file, | |
| set_image_properties, | |
| square_root, | |
| subtract, | |
| web_search, | |
| wiki_search, | |
| ] | |
| # Build graph function | |
| def build_graph(provider: str = "google"): | |
| """Build the graph""" | |
| # Load environment variables from .env file | |
| if provider == "google": | |
| # Google Gemini | |
| llm = ChatGoogleGenerativeAI( | |
| model="gemini-2.0-flash", | |
| temperature=0, | |
| generation_config={ | |
| "temperature": 0.0, | |
| "max_output_tokens": 2000, | |
| "candidate_count": 1, | |
| } | |
| ) | |
| elif provider == "groq": | |
| # Groq https://console.groq.com/docs/models | |
| llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it | |
| elif provider == "huggingface": | |
| llm = ChatHuggingFace( | |
| llm=HuggingFaceEndpoint( | |
| repo_id="mistralai/Mistral-7B-Instruct-v0.2", | |
| temperature=0, | |
| # Other models to try: | |
| # "meta-llama/Llama-2-7b-chat-hf" | |
| # "google/gemma-7b-it" | |
| # "mosaicml/mpt-7b-instruct" | |
| # "tiiuae/falcon-7b-instruct" | |
| token=os.environ.get("HF_TOKEN"), | |
| ) | |
| ) | |
| elif provider == "litellm": | |
| # HuggingFace Embeddings | |
| llm = ChatLiteLLM( | |
| model_id="ollama_chat/qwen2:7b", | |
| api_base="http://127.0.0.1:11434", | |
| num_ctx=8192, | |
| ) | |
| else: | |
| raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") | |
| # Bind tools to LLM | |
| llm_with_tools = llm.bind_tools(tools) | |
| # Node | |
| def assistant(state: MessagesState): | |
| """Assistant node""" | |
| return {"messages": [llm_with_tools.invoke(state["messages"])]} | |
| def retriever(state: MessagesState): | |
| """Retriever node""" | |
| similar_question = vector_store.similarity_search(state["messages"][0].content) | |
| if similar_question: | |
| content = f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}" | |
| example_msg = HumanMessage(content=content) | |
| return {"messages": [sys_msg] + state["messages"] + [example_msg]} | |
| else: | |
| return {"messages": [sys_msg] + state["messages"]} | |
| builder = StateGraph(MessagesState) | |
| builder.add_node("retriever", retriever) | |
| builder.add_node("assistant", assistant) | |
| builder.add_node("tools", ToolNode(tools)) | |
| builder.add_edge(START, "retriever") | |
| builder.add_edge("retriever", "assistant") | |
| builder.add_conditional_edges( | |
| "assistant", | |
| tools_condition, | |
| ) | |
| builder.add_edge("tools", "assistant") | |
| # Compile graph | |
| return builder.compile() | |
| # test | |
| if __name__ == "__main__": | |
| question = "When was a picture of Eiffel Tower first added to the Wikipedia page on the Principle of double effect?" | |
| # Build the graph | |
| graph = build_graph() | |
| # Run the graph | |
| messages = [HumanMessage(content=question)] | |
| messages = graph.invoke({"messages": messages}) | |
| for m in messages["messages"]: | |
| m.pretty_print() | |