Romain Lembo commited on
Commit
4cc7463
·
1 Parent(s): da62ee4

Add LangGraph Agent implementation and search tools for Arxiv, Wikipedia, and web queries

Browse files
Files changed (5) hide show
  1. agent.py +113 -0
  2. requirements.txt +20 -1
  3. tools/arvix_search.py +17 -0
  4. tools/web_search.py +17 -0
  5. tools/wiki_search.py +17 -0
agent.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.vectorstores import SupabaseVectorStore
11
+ from langchain_core.messages import SystemMessage, HumanMessage
12
+ from langchain_core.tools import tool
13
+ from langchain.tools.retriever import create_retriever_tool
14
+ from supabase.client import Client, create_client
15
+
16
+ # Tools
17
+ from tools.wiki_search import wiki_search
18
+ from tools.web_search import web_search
19
+ from tools.arvix_search import arvix_search
20
+
21
+ load_dotenv()
22
+
23
+ # load the system prompt from the file
24
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
25
+ system_prompt = f.read()
26
+
27
+ # System message
28
+ sys_msg = SystemMessage(content=system_prompt)
29
+
30
+ # build a retriever
31
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
32
+ supabase: Client = create_client(
33
+ os.environ.get("SUPABASE_URL"),
34
+ os.environ.get("SUPABASE_SERVICE_KEY"))
35
+ vector_store = SupabaseVectorStore(
36
+ client=supabase,
37
+ embedding= embeddings,
38
+ table_name="documents",
39
+ query_name="match_documents_langchain",
40
+ )
41
+ create_retriever_tool = create_retriever_tool(
42
+ retriever=vector_store.as_retriever(),
43
+ name="Question Search",
44
+ description="A tool to retrieve similar questions from a vector store.",
45
+ )
46
+
47
+ tools = [
48
+ wiki_search,
49
+ web_search,
50
+ arvix_search,
51
+ ]
52
+
53
+ # Build graph function
54
+ def build_graph(provider: str = "groq"):
55
+ """Build the graph"""
56
+ # Load environment variables from .env file
57
+ if provider == "google":
58
+ # Google Gemini
59
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
60
+ elif provider == "groq":
61
+ # Groq https://console.groq.com/docs/models
62
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
63
+ elif provider == "huggingface":
64
+ # TODO: Add huggingface endpoint
65
+ llm = ChatHuggingFace(
66
+ llm=HuggingFaceEndpoint(
67
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
68
+ temperature=0,
69
+ ),
70
+ )
71
+ else:
72
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
73
+ # Bind tools to LLM
74
+ llm_with_tools = llm.bind_tools(tools)
75
+
76
+ # Node
77
+ def assistant(state: MessagesState):
78
+ """Assistant node"""
79
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
80
+
81
+ def retriever(state: MessagesState):
82
+ """Retriever node"""
83
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
84
+ example_msg = HumanMessage(
85
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
86
+ )
87
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
88
+
89
+ builder = StateGraph(MessagesState)
90
+ builder.add_node("retriever", retriever)
91
+ builder.add_node("assistant", assistant)
92
+ builder.add_node("tools", ToolNode(tools))
93
+ builder.add_edge(START, "retriever")
94
+ builder.add_edge("retriever", "assistant")
95
+ builder.add_conditional_edges(
96
+ "assistant",
97
+ tools_condition,
98
+ )
99
+ builder.add_edge("tools", "assistant")
100
+
101
+ # Compile graph
102
+ return builder.compile()
103
+
104
+ # test
105
+ if __name__ == "__main__":
106
+ question = "When was a picture of Eiffel Tower first added to the Wikipedia page on the Principle of double effect?"
107
+ # Build the graph
108
+ graph = build_graph()
109
+ # Run the graph
110
+ messages = [HumanMessage(content=question)]
111
+ messages = graph.invoke({"messages": messages})
112
+ for m in messages["messages"]:
113
+ m.pretty_print()
requirements.txt CHANGED
@@ -1,3 +1,22 @@
1
  gradio
2
  requests
3
- langchain-core
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  gradio
2
  requests
3
+
4
+ # Langchain and its dependencies
5
+ langchain
6
+ langchain-community
7
+ langchain-core
8
+ langchain-google-genai
9
+ langchain-huggingface
10
+ langchain-groq
11
+ langchain-tavily
12
+ langchain-chroma
13
+ langgraph
14
+
15
+ # Dependencies for various integrations
16
+ huggingface_hub
17
+ supabase
18
+ arxiv
19
+ pymupdf
20
+ wikipedia
21
+ pgvector
22
+ python-dotenv
tools/arvix_search.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_community.document_loaders import ArxivLoader
2
+ from langchain_core.tools import tool
3
+
4
+ @tool
5
+ def arvix_search(query: str) -> str:
6
+ """Search Arxiv for a query and return maximum 3 result.
7
+
8
+ Args:
9
+ query: The search query.
10
+ """
11
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
12
+ formatted_search_docs = "\n\n---\n\n".join(
13
+ [
14
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
15
+ for doc in search_docs
16
+ ])
17
+ return {"arvix_results": formatted_search_docs}
tools/web_search.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_community.tools.tavily_search import TavilySearchResults
2
+ from langchain_core.tools import tool
3
+
4
+ @tool
5
+ def web_search(query: str) -> str:
6
+ """Search Tavily for a query and return maximum 3 results.
7
+
8
+ Args:
9
+ query: The search query.
10
+ """
11
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
12
+ formatted_search_docs = "\n\n---\n\n".join(
13
+ [
14
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
15
+ for doc in search_docs
16
+ ])
17
+ return {"web_results": formatted_search_docs}
tools/wiki_search.py ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain_community.document_loaders import WikipediaLoader
2
+ from langchain_core.tools import tool
3
+
4
+ @tool
5
+ def wiki_search(query: str) -> str:
6
+ """Search Wikipedia for a query and return maximum 2 results.
7
+
8
+ Args:
9
+ query: The search query.
10
+ """
11
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
12
+ formatted_search_docs = "\n\n---\n\n".join(
13
+ [
14
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
15
+ for doc in search_docs
16
+ ])
17
+ return {"wiki_results": formatted_search_docs}