"""LangGraph Agent""" import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain.tools.retriever import create_retriever_tool from supabase.client import Client, create_client from langchain_litellm import ChatLiteLLM # Tools from tools.wiki_search import wiki_search from tools.web_search import web_search from tools.arvix_search import arvix_search from tools.python_code_parser import python_code_parser from tools.multiply import multiply from tools.add import add from tools.divide import divide from tools.modulus import modulus from tools.power import power from tools.subtract import subtract from tools.square_root import square_root from tools.execute_code_multilang import execute_code_multilang from tools.save_read_file import save_read_file from tools.download_file import download_file from tools.extract_text_from_image import extract_text_from_image from tools.analyze_csv_file import analyze_csv_file from tools.analyze_excel_file import analyze_excel_file load_dotenv() # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # build a retriever embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768 supabase: Client = create_client( os.environ.get("SUPABASE_URL"), os.environ.get("SUPABASE_SERVICE_KEY")) vector_store = SupabaseVectorStore( client=supabase, embedding= embeddings, table_name="documents", query_name="match_documents_langchain", ) create_retriever_tool = create_retriever_tool( retriever=vector_store.as_retriever(), name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ wiki_search, web_search, arvix_search, python_code_parser, add, multiply, divide, execute_code_multilang, modulus, power, subtract, square_root, save_read_file, download_file, extract_text_from_image, analyze_csv_file, analyze_excel_file, ] # Build graph function def build_graph(provider: str = "google"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI( model="gemini-2.0-flash", temperature=0, generation_config={ "temperature": 0.0, "max_output_tokens": 2000, "candidate_count": 1, } ) elif provider == "groq": # Groq https://console.groq.com/docs/models llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it elif provider == "huggingface": llm = ChatHuggingFace( llm=HuggingFaceEndpoint( repo_id="mistralai/Mistral-7B-Instruct-v0.2", temperature=0, # Other models to try: # "meta-llama/Llama-2-7b-chat-hf" # "google/gemma-7b-it" # "mosaicml/mpt-7b-instruct" # "tiiuae/falcon-7b-instruct" token=os.environ.get("HF_TOKEN"), ) ) elif provider == "litellm": # HuggingFace Embeddings llm = ChatLiteLLM( model_id="ollama_chat/qwen2:7b", api_base="http://127.0.0.1:11434", num_ctx=8192, ) else: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} def retriever(state: MessagesState): """Retriever node""" similar_question = vector_store.similarity_search(state["messages"][0].content) example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", ) return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile() # test if __name__ == "__main__": question = "When was a picture of Eiffel Tower first added to the Wikipedia page on the Principle of double effect?" # Build the graph graph = build_graph() # Run the graph messages = [HumanMessage(content=question)] messages = graph.invoke({"messages": messages}) for m in messages["messages"]: m.pretty_print()