Spaces:
Runtime error
Runtime error
File size: 10,525 Bytes
ced6a25 319d0b3 97bbd0f 319d0b3 97bbd0f db296ae eb521b9 db296ae ced6a25 db296ae ced6a25 db296ae eb521b9 ced6a25 eb521b9 ced6a25 db296ae eb521b9 ced6a25 319d0b3 ced6a25 a30b826 319d0b3 a30b826 319d0b3 a30b826 b22393c a30b826 319d0b3 ced6a25 af6ede9 05011af 97bbd0f a30b826 319d0b3 a30b826 ced6a25 97bbd0f ced6a25 97bbd0f ced6a25 af6ede9 97bbd0f ced6a25 05011af ced6a25 a30b826 ced6a25 97bbd0f ced6a25 97bbd0f ced6a25 3b7182d ced6a25 319d0b3 97bbd0f ced6a25 2fae72c 97bbd0f beedc41 ced6a25 942cc37 ced6a25 97bbd0f ac1cc65 97bbd0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes
try:
import spaces
except ImportError:
class MockSpaces:
def GPU(self, duration=0):
def decorator(func):
return func
return decorator
spaces = MockSpaces()
if torch.cuda.is_available():
print("🚀 RunPod/Local GPU detected: Bypassing Hugging Face Spaces queue.")
def gpu_bypass_decorator(duration=0):
def decorator(func):
return func
return decorator
spaces.GPU = gpu_bypass_decorator
else:
print("🐢 No GPU detected: Using standard Spaces logic (or Build Mode).")
# ----------------------------------------
colors.steel_blue = colors.Color(
name="steel_blue",
c50="#EBF3F8",
c100="#D3E5F0",
c200="#A8CCE1",
c300="#7DB3D2",
c400="#529AC3",
c500="#4682B4",
c600="#3E72A0",
c700="#36638C",
c800="#2E5378",
c900="#264364",
c950="#1E3450",
)
class SteelBlueTheme(Soft):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.gray,
secondary_hue: colors.Color | str = colors.steel_blue,
neutral_hue: colors.Color | str = colors.slate,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
),
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
background_fill_primary="*primary_50",
background_fill_primary_dark="*primary_900",
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
button_primary_text_color="white",
button_primary_text_color_hover="white",
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
button_secondary_text_color="black",
button_secondary_text_color_hover="white",
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
slider_color="*secondary_500",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_primary_shadow="*shadow_drop_lg",
button_large_padding="11px",
color_accent_soft="*primary_100",
block_label_background_fill="*primary_200",
)
steel_blue_theme = SteelBlueTheme()
from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
pipe = None
if torch.cuda.is_available():
print("🚀 GPU detected! Initializing model for RunPod Environment...")
dtype = torch.bfloat16
print("Loading Transformer...")
transformer_model = QwenImageTransformer2DModel.from_pretrained(
"linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map="auto"
)
# 2. Load Pipeline (device_map="balanced")
print("Loading Pipeline...")
pipe = QwenImageEditPlusPipeline.from_pretrained(
"Qwen/Qwen-Image-Edit-2509",
transformer=transformer_model,
torch_dtype=dtype,
device_map="balanced"
)
# 3. Load LoRAs
print("Loading LoRAs...")
pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", adapter_name="anime")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles", weight_name="镜头转换.safetensors", adapter_name="multiple-angles")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration", weight_name="移除光影.safetensors", adapter_name="light-restoration")
pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight")
pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", weight_name="多角度灯光-251116.safetensors", adapter_name="multi-angle-lighting")
pipe.load_lora_weights("tlennon-ie/qwen-edit-skin", weight_name="qwen-edit-skin_1.1_000002750.safetensors", adapter_name="edit-skin")
pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene")
pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", weight_name="qwen-edit-enhance_64-v3_000001000.safetensors", adapter_name="upscale-image")
try:
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
except Exception as e:
print(f"Warning: FA3 set skipped: {e}")
else:
print("🐢 No GPU detected (HF Build Environment). SKIPPING MODEL LOAD.")
MAX_SEED = np.iinfo(np.int32).max
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
@spaces.GPU(duration=30)
def infer(input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
if pipe is None:
raise gr.Error("Model not loaded. Are you running on GPU?")
if input_image is None:
raise gr.Error("Please upload an image to edit.")
adapters_map = {
"Photo-to-Anime": "anime",
"Multiple-Angles": "multiple-angles",
"Light-Restoration": "light-restoration",
"Relight": "relight",
"Multi-Angle-Lighting": "multi-angle-lighting",
"Edit-Skin": "edit-skin",
"Next-Scene": "next-scene",
"Upscale-Image": "upscale-image"
}
if lora_adapter in adapters_map:
pipe.set_adapters([adapters_map[lora_adapter]], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=pipe.device).manual_seed(seed)
negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
original_image = input_image.convert("RGB")
width, height = update_dimensions_on_upload(original_image)
result = pipe(
image=original_image,
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
num_inference_steps=steps,
generator=generator,
true_cfg_scale=guidance_scale,
).images[0]
return result, seed
@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
if pipe is None: return None, 0
input_pil = input_image.convert("RGB")
result, seed = infer(input_pil, prompt, lora_adapter, 0, True, 1.0, 4)
return result, seed
css="""
#col-container { margin: 0 auto; max-width: 960px; }
#main-title h1 { font-size: 2.1em !important; }
"""
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# **Qwen-Image-Edit-2509 (2x A40 Ready)**", elem_id="main-title")
with gr.Row(equal_height=True):
with gr.Column():
input_image = gr.Image(label="Upload Image", type="pil", height=290)
prompt = gr.Text(label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..")
run_button = gr.Button("Edit Image", variant="primary")
with gr.Column():
output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Choose Editing Style",
choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
value="Photo-to-Anime"
)
with gr.Accordion("Advanced Settings", open=False, visible=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
run_button.click(fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed])
if __name__ == "__main__":
demo.queue(max_size=30).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False) |