File size: 10,525 Bytes
ced6a25
 
 
 
 
 
 
 
 
 
319d0b3
 
 
 
 
 
 
 
 
 
 
 
 
97bbd0f
 
 
319d0b3
 
 
 
 
97bbd0f
db296ae
 
 
 
 
 
 
 
 
 
 
 
 
eb521b9
 
db296ae
ced6a25
 
 
 
db296ae
ced6a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db296ae
 
eb521b9
 
 
 
 
 
ced6a25
 
 
 
 
eb521b9
 
 
 
ced6a25
db296ae
eb521b9
ced6a25
 
 
 
 
319d0b3
ced6a25
a30b826
319d0b3
a30b826
 
 
 
 
 
 
 
 
 
319d0b3
a30b826
 
 
 
 
 
 
 
 
b22393c
 
 
 
 
 
 
 
 
 
 
 
 
 
a30b826
319d0b3
ced6a25
 
 
af6ede9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05011af
97bbd0f
a30b826
319d0b3
a30b826
ced6a25
 
97bbd0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ced6a25
 
97bbd0f
 
 
ced6a25
 
af6ede9
97bbd0f
ced6a25
 
 
 
 
 
 
 
 
 
 
 
05011af
ced6a25
a30b826
ced6a25
97bbd0f
ced6a25
 
 
97bbd0f
 
ced6a25
 
3b7182d
ced6a25
319d0b3
97bbd0f
ced6a25
 
2fae72c
97bbd0f
beedc41
ced6a25
942cc37
ced6a25
97bbd0f
 
 
 
 
 
 
 
 
 
 
 
 
 
ac1cc65
 
97bbd0f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import gradio as gr
import numpy as np
import torch
import random
from PIL import Image
from typing import Iterable
from gradio.themes import Soft
from gradio.themes.utils import colors, fonts, sizes

try:
    import spaces
except ImportError:
    class MockSpaces:
        def GPU(self, duration=0):
            def decorator(func):
                return func
            return decorator
    spaces = MockSpaces()

if torch.cuda.is_available():
    print("🚀 RunPod/Local GPU detected: Bypassing Hugging Face Spaces queue.")
    def gpu_bypass_decorator(duration=0):
        def decorator(func):
            return func
        return decorator
    spaces.GPU = gpu_bypass_decorator
else:
    print("🐢 No GPU detected: Using standard Spaces logic (or Build Mode).")

# ----------------------------------------

colors.steel_blue = colors.Color(
    name="steel_blue",
    c50="#EBF3F8",
    c100="#D3E5F0",
    c200="#A8CCE1",
    c300="#7DB3D2",
    c400="#529AC3",
    c500="#4682B4",
    c600="#3E72A0",
    c700="#36638C",
    c800="#2E5378",
    c900="#264364",
    c950="#1E3450",
)

class SteelBlueTheme(Soft):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.gray,
        secondary_hue: colors.Color | str = colors.steel_blue,
        neutral_hue: colors.Color | str = colors.slate,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
        ),
        font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            background_fill_primary="*primary_50",
            background_fill_primary_dark="*primary_900",
            body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
            body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
            button_primary_text_color="white",
            button_primary_text_color_hover="white",
            button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
            button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
            button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_800)",
            button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_500)",
            button_secondary_text_color="black",
            button_secondary_text_color_hover="white",
            button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
            button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
            button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
            button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
            slider_color="*secondary_500",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_primary_shadow="*shadow_drop_lg",
            button_large_padding="11px",
            color_accent_soft="*primary_100",
            block_label_background_fill="*primary_200",
        )
steel_blue_theme = SteelBlueTheme()

from diffusers import FlowMatchEulerDiscreteScheduler
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

pipe = None 

if torch.cuda.is_available():
    print("🚀 GPU detected! Initializing model for RunPod Environment...")
    dtype = torch.bfloat16
    
    print("Loading Transformer...")
    transformer_model = QwenImageTransformer2DModel.from_pretrained(
        "linoyts/Qwen-Image-Edit-Rapid-AIO", 
        subfolder='transformer',
        torch_dtype=dtype,
        device_map="auto" 
    )

    # 2. Load Pipeline (device_map="balanced")
    print("Loading Pipeline...")
    pipe = QwenImageEditPlusPipeline.from_pretrained(
        "Qwen/Qwen-Image-Edit-2509",
        transformer=transformer_model,
        torch_dtype=dtype,
        device_map="balanced"
    )

    # 3. Load LoRAs
    print("Loading LoRAs...")
    pipe.load_lora_weights("autoweeb/Qwen-Image-Edit-2509-Photo-to-Anime", weight_name="Qwen-Image-Edit-2509-Photo-to-Anime_000001000.safetensors", adapter_name="anime")
    pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multiple-angles", weight_name="镜头转换.safetensors", adapter_name="multiple-angles")
    pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Light_restoration", weight_name="移除光影.safetensors", adapter_name="light-restoration")
    pipe.load_lora_weights("dx8152/Qwen-Image-Edit-2509-Relight", weight_name="Qwen-Edit-Relight.safetensors", adapter_name="relight")
    pipe.load_lora_weights("dx8152/Qwen-Edit-2509-Multi-Angle-Lighting", weight_name="多角度灯光-251116.safetensors", adapter_name="multi-angle-lighting")
    pipe.load_lora_weights("tlennon-ie/qwen-edit-skin", weight_name="qwen-edit-skin_1.1_000002750.safetensors", adapter_name="edit-skin")
    pipe.load_lora_weights("lovis93/next-scene-qwen-image-lora-2509", weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene")
    pipe.load_lora_weights("vafipas663/Qwen-Edit-2509-Upscale-LoRA", weight_name="qwen-edit-enhance_64-v3_000001000.safetensors", adapter_name="upscale-image")

    try:
        pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
    except Exception as e:
        print(f"Warning: FA3 set skipped: {e}")
else:
    print("🐢 No GPU detected (HF Build Environment). SKIPPING MODEL LOAD.")

MAX_SEED = np.iinfo(np.int32).max

def update_dimensions_on_upload(image):
    if image is None:
        return 1024, 1024
    original_width, original_height = image.size
    if original_width > original_height:
        new_width = 1024
        aspect_ratio = original_height / original_width
        new_height = int(new_width * aspect_ratio)
    else:
        new_height = 1024
        aspect_ratio = original_width / original_height
        new_width = int(new_height * aspect_ratio)
    new_width = (new_width // 8) * 8
    new_height = (new_height // 8) * 8
    return new_width, new_height

@spaces.GPU(duration=30)
def infer(input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps, progress=gr.Progress(track_tqdm=True)):
    if pipe is None:
        raise gr.Error("Model not loaded. Are you running on GPU?")

    if input_image is None:
        raise gr.Error("Please upload an image to edit.")
    
    adapters_map = {
        "Photo-to-Anime": "anime",
        "Multiple-Angles": "multiple-angles",
        "Light-Restoration": "light-restoration",
        "Relight": "relight",
        "Multi-Angle-Lighting": "multi-angle-lighting",
        "Edit-Skin": "edit-skin",
        "Next-Scene": "next-scene",
        "Upscale-Image": "upscale-image"
    }
    
    if lora_adapter in adapters_map:
        pipe.set_adapters([adapters_map[lora_adapter]], adapter_weights=[1.0])
            
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    generator = torch.Generator(device=pipe.device).manual_seed(seed)
    
    negative_prompt = "worst quality, low quality, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, jpeg artifacts, signature, watermark, username, blurry"
    original_image = input_image.convert("RGB")
    width, height = update_dimensions_on_upload(original_image)
    
    result = pipe(
        image=original_image,
        prompt=prompt,
        negative_prompt=negative_prompt,
        height=height,
        width=width,
        num_inference_steps=steps,
        generator=generator,
        true_cfg_scale=guidance_scale,
    ).images[0]
    return result, seed

@spaces.GPU(duration=30)
def infer_example(input_image, prompt, lora_adapter):
    if pipe is None: return None, 0
    input_pil = input_image.convert("RGB")
    result, seed = infer(input_pil, prompt, lora_adapter, 0, True, 1.0, 4)
    return result, seed

css="""
#col-container { margin: 0 auto; max-width: 960px; }
#main-title h1 { font-size: 2.1em !important; }
"""

with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# **Qwen-Image-Edit-2509 (2x A40 Ready)**", elem_id="main-title")
        
        with gr.Row(equal_height=True):
            with gr.Column():
                input_image = gr.Image(label="Upload Image", type="pil", height=290)
                prompt = gr.Text(label="Edit Prompt", show_label=True, placeholder="e.g., transform into anime..")
                run_button = gr.Button("Edit Image", variant="primary")
            with gr.Column():
                output_image = gr.Image(label="Output Image", interactive=False, format="png", height=350)
        
        with gr.Row():
            lora_adapter = gr.Dropdown(
                label="Choose Editing Style",
                choices=["Photo-to-Anime", "Multiple-Angles", "Light-Restoration", "Multi-Angle-Lighting", "Upscale-Image", "Relight", "Next-Scene", "Edit-Skin"],
                value="Photo-to-Anime"
            )
        
        with gr.Accordion("Advanced Settings", open=False, visible=False):
            seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
            guidance_scale = gr.Slider(label="Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
            steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
            
        run_button.click(fn=infer, inputs=[input_image, prompt, lora_adapter, seed, randomize_seed, guidance_scale, steps], outputs=[output_image, seed])

if __name__ == "__main__":
    demo.queue(max_size=30).launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False)