--- title: EcoMindAI Test emoji: ๐Ÿš€ colorFrom: green colorTo: blue sdk: gradio sdk_version: 6.0.0 app_file: app.py pinned: false --- # EcoMindAI Estimate the environmental impact of your AI project and reduce it through recommendations. ## About EcoMindAI is a gradio / FastAPI-based web application that helps you: - ๐ŸŒฑ **Estimate** the environmental impact of your AI/ML projects - ๐Ÿ“Š **Analyze** energy consumption and carbon footprint - ๐Ÿ’ก **Get recommendations** to reduce environmental impact The application provides a REST API for integration into your existing workflows and a web interface for interactive usage. ## ๐Ÿš€ For Users - Quick Start Use the pre-built Docker image to run EcoMindAI without any setup: ```bash # Pull and run the latest version docker pull sustain4raise/ecomindai:latest docker run -p 8000:8000 sustain4raise/ecomindai:latest ``` **Access the application:** - ๐ŸŒ Web interface: `http://localhost:8000` ### Using specific versions ```bash # Pull a specific version docker pull sustain4raise/ecomindai:1.0.1 docker run -p 8000:8000 sustain4raise/ecomindai:1.0.1 ``` ## ๐Ÿ› ๏ธ For Developers - Local Development ### Prerequisites - Python >= 3.13 - Pip & Pipenv ### Setup 1. Clone the repository: ```bash git clone https://github.com/sustain4ai/ecomindai.git cd ecomindai ``` 2. Install dependencies: ```bash pipenv sync ``` 3. Run the application: ```bash pipenv run python main.py ``` The development server will start at `http://localhost:8000` ## ๐Ÿงช Testing the API EcoMindAI uses FastAPI, which automatically generates interactive API documentation: ### Interactive Documentation - **Swagger UI**: Go to `http://localhost:8000/docs` - Try API endpoints directly in your browser - See request/response schemas - Test with sample data - **ReDoc**: Go to `http://localhost:8000/redoc` - Alternative documentation format - Better for reading and understanding