Spaces:
Runtime error
Runtime error
Upload zh_mt5_model.py with huggingface_hub
Browse files- zh_mt5_model.py +28 -0
zh_mt5_model.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import T5Tokenizer, MT5ForConditionalGeneration
|
| 2 |
+
|
| 3 |
+
class T5_B(object):
|
| 4 |
+
def __init__(self, model: str = "google/t5-large-ssm", device = 'cuda:0'):
|
| 5 |
+
self.device = device
|
| 6 |
+
self.tokenizer = T5Tokenizer.from_pretrained(model)
|
| 7 |
+
if device == 'multigpu':
|
| 8 |
+
self.model = MT5ForConditionalGeneration.from_pretrained(model).eval()
|
| 9 |
+
self.model.parallelize()
|
| 10 |
+
else:
|
| 11 |
+
self.model = MT5ForConditionalGeneration.from_pretrained(model).to(device).eval()
|
| 12 |
+
|
| 13 |
+
def predict(self, question: str):
|
| 14 |
+
device = 'cuda:0' if self.device == 'multigpu' else self.device
|
| 15 |
+
encode = self.tokenizer(question, return_tensors='pt').to(device)
|
| 16 |
+
answer = self.model.generate(encode.input_ids)[0]
|
| 17 |
+
decoded = self.tokenizer.decode(answer, skip_special_tokens=True)
|
| 18 |
+
return decoded
|
| 19 |
+
|
| 20 |
+
def predict_batch(self, question_list):
|
| 21 |
+
assert type(question_list) == type([])
|
| 22 |
+
device = 'cuda:0' if self.device == 'multigpu' else self.device
|
| 23 |
+
encode = self.tokenizer(question_list, return_tensors='pt', padding = True).to(device)
|
| 24 |
+
answer = self.model.generate(**encode)
|
| 25 |
+
#return answer
|
| 26 |
+
decoded = [self.tokenizer.decode(ans, skip_special_tokens=True) for ans in answer]
|
| 27 |
+
#decoded = self.tokenizer.decode(answer, skip_special_tokens=True)
|
| 28 |
+
return decoded
|