Spaces:
Runtime error
Runtime error
lyndonzheng
commited on
Commit
Β·
a19de17
1
Parent(s):
4bba5c3
fixed version bug
Browse files- app.py +3 -3
- flash3d/networks/gaussian_predictor.py +2 -2
- flash3d/unidepth/utils/geometric.py +0 -8
- pre-requirements.txt +1 -1
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -26,9 +26,9 @@ def main():
|
|
| 26 |
|
| 27 |
cfg = OmegaConf.load(model_cfg_path)
|
| 28 |
model = GaussianPredictor(cfg)
|
| 29 |
-
device = torch.device(
|
| 30 |
-
model.to(device)
|
| 31 |
model.load_model(model_path)
|
|
|
|
| 32 |
|
| 33 |
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
|
| 34 |
to_tensor = TT.ToTensor()
|
|
@@ -150,7 +150,7 @@ def main():
|
|
| 150 |
)
|
| 151 |
|
| 152 |
demo.queue(max_size=1)
|
| 153 |
-
demo.launch(
|
| 154 |
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
|
|
|
| 26 |
|
| 27 |
cfg = OmegaConf.load(model_cfg_path)
|
| 28 |
model = GaussianPredictor(cfg)
|
| 29 |
+
device = torch.device(device)
|
|
|
|
| 30 |
model.load_model(model_path)
|
| 31 |
+
model.to(device)
|
| 32 |
|
| 33 |
pad_border_fn = TT.Pad((cfg.dataset.pad_border_aug, cfg.dataset.pad_border_aug))
|
| 34 |
to_tensor = TT.ToTensor()
|
|
|
|
| 150 |
)
|
| 151 |
|
| 152 |
demo.queue(max_size=1)
|
| 153 |
+
demo.launch()
|
| 154 |
|
| 155 |
|
| 156 |
if __name__ == "__main__":
|
flash3d/networks/gaussian_predictor.py
CHANGED
|
@@ -235,7 +235,7 @@ class GaussianPredictor(nn.Module):
|
|
| 235 |
for ckpt in ckpts[num_ckpts:]:
|
| 236 |
ckpt.unlink()
|
| 237 |
|
| 238 |
-
def load_model(self, weights_path, optimizer=None):
|
| 239 |
"""Load model(s) from disk
|
| 240 |
"""
|
| 241 |
weights_path = Path(weights_path)
|
|
@@ -246,7 +246,7 @@ class GaussianPredictor(nn.Module):
|
|
| 246 |
return
|
| 247 |
|
| 248 |
logging.info(f"Loading weights from {weights_path}...")
|
| 249 |
-
state_dict = torch.load(weights_path)
|
| 250 |
if "version" in state_dict and state_dict["version"] == "1.0":
|
| 251 |
new_dict = {}
|
| 252 |
for k, v in state_dict["model"].items():
|
|
|
|
| 235 |
for ckpt in ckpts[num_ckpts:]:
|
| 236 |
ckpt.unlink()
|
| 237 |
|
| 238 |
+
def load_model(self, weights_path, optimizer=None, device='cpu'):
|
| 239 |
"""Load model(s) from disk
|
| 240 |
"""
|
| 241 |
weights_path = Path(weights_path)
|
|
|
|
| 246 |
return
|
| 247 |
|
| 248 |
logging.info(f"Loading weights from {weights_path}...")
|
| 249 |
+
state_dict = torch.load(weights_path, map_location=torch.device(device))
|
| 250 |
if "version" in state_dict and state_dict["version"] == "1.0":
|
| 251 |
new_dict = {}
|
| 252 |
for k, v in state_dict["model"].items():
|
flash3d/unidepth/utils/geometric.py
CHANGED
|
@@ -48,7 +48,6 @@ def generate_rays(
|
|
| 48 |
return ray_directions, angles
|
| 49 |
|
| 50 |
|
| 51 |
-
@torch.jit.script
|
| 52 |
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 53 |
theta = spherical_tensor[..., 0] # Extract polar angle
|
| 54 |
phi = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
@@ -68,7 +67,6 @@ def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tens
|
|
| 68 |
return euclidean_tensor
|
| 69 |
|
| 70 |
|
| 71 |
-
@torch.jit.script
|
| 72 |
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 73 |
theta = spherical_tensor[..., 0] # Extract polar angle
|
| 74 |
phi = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
@@ -84,7 +82,6 @@ def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
|
| 84 |
return euclidean_tensor
|
| 85 |
|
| 86 |
|
| 87 |
-
@torch.jit.script
|
| 88 |
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 89 |
x = spherical_tensor[..., 0] # Extract polar angle
|
| 90 |
y = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
@@ -100,7 +97,6 @@ def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
|
| 100 |
return euclidean_tensor
|
| 101 |
|
| 102 |
|
| 103 |
-
@torch.jit.script
|
| 104 |
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
|
| 105 |
pitch = torch.asin(euclidean_tensor[..., 1])
|
| 106 |
yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
|
|
@@ -109,7 +105,6 @@ def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tens
|
|
| 109 |
return euclidean_tensor
|
| 110 |
|
| 111 |
|
| 112 |
-
@torch.jit.script
|
| 113 |
def unproject_points(
|
| 114 |
depth: torch.Tensor, camera_intrinsics: torch.Tensor
|
| 115 |
) -> torch.Tensor:
|
|
@@ -152,7 +147,6 @@ def unproject_points(
|
|
| 152 |
return unprojected_points
|
| 153 |
|
| 154 |
|
| 155 |
-
@torch.jit.script
|
| 156 |
def project_points(
|
| 157 |
points_3d: torch.Tensor,
|
| 158 |
intrinsic_matrix: torch.Tensor,
|
|
@@ -200,7 +194,6 @@ def project_points(
|
|
| 200 |
return mean_depth_maps.reshape(-1, 1, *image_shape) # (B, 1, H, W)
|
| 201 |
|
| 202 |
|
| 203 |
-
@torch.jit.script
|
| 204 |
def downsample(data: torch.Tensor, downsample_factor: int = 2):
|
| 205 |
N, _, H, W = data.shape
|
| 206 |
data = data.view(
|
|
@@ -220,7 +213,6 @@ def downsample(data: torch.Tensor, downsample_factor: int = 2):
|
|
| 220 |
return data
|
| 221 |
|
| 222 |
|
| 223 |
-
@torch.jit.script
|
| 224 |
def flat_interpolate(
|
| 225 |
flat_tensor: torch.Tensor,
|
| 226 |
old: Tuple[int, int],
|
|
|
|
| 48 |
return ray_directions, angles
|
| 49 |
|
| 50 |
|
|
|
|
| 51 |
def spherical_zbuffer_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 52 |
theta = spherical_tensor[..., 0] # Extract polar angle
|
| 53 |
phi = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
|
|
| 67 |
return euclidean_tensor
|
| 68 |
|
| 69 |
|
|
|
|
| 70 |
def spherical_to_euclidean(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 71 |
theta = spherical_tensor[..., 0] # Extract polar angle
|
| 72 |
phi = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
|
|
| 82 |
return euclidean_tensor
|
| 83 |
|
| 84 |
|
|
|
|
| 85 |
def euclidean_to_spherical(spherical_tensor: torch.Tensor) -> torch.Tensor:
|
| 86 |
x = spherical_tensor[..., 0] # Extract polar angle
|
| 87 |
y = spherical_tensor[..., 1] # Extract azimuthal angle
|
|
|
|
| 97 |
return euclidean_tensor
|
| 98 |
|
| 99 |
|
|
|
|
| 100 |
def euclidean_to_spherical_zbuffer(euclidean_tensor: torch.Tensor) -> torch.Tensor:
|
| 101 |
pitch = torch.asin(euclidean_tensor[..., 1])
|
| 102 |
yaw = torch.atan2(euclidean_tensor[..., 0], euclidean_tensor[..., -1])
|
|
|
|
| 105 |
return euclidean_tensor
|
| 106 |
|
| 107 |
|
|
|
|
| 108 |
def unproject_points(
|
| 109 |
depth: torch.Tensor, camera_intrinsics: torch.Tensor
|
| 110 |
) -> torch.Tensor:
|
|
|
|
| 147 |
return unprojected_points
|
| 148 |
|
| 149 |
|
|
|
|
| 150 |
def project_points(
|
| 151 |
points_3d: torch.Tensor,
|
| 152 |
intrinsic_matrix: torch.Tensor,
|
|
|
|
| 194 |
return mean_depth_maps.reshape(-1, 1, *image_shape) # (B, 1, H, W)
|
| 195 |
|
| 196 |
|
|
|
|
| 197 |
def downsample(data: torch.Tensor, downsample_factor: int = 2):
|
| 198 |
N, _, H, W = data.shape
|
| 199 |
data = data.view(
|
|
|
|
| 213 |
return data
|
| 214 |
|
| 215 |
|
|
|
|
| 216 |
def flat_interpolate(
|
| 217 |
flat_tensor: torch.Tensor,
|
| 218 |
old: Tuple[int, int],
|
pre-requirements.txt
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 2 |
-
torch
|
| 3 |
torchvision
|
| 4 |
torchaudio
|
| 5 |
xformers==0.0.25.post1
|
|
|
|
| 1 |
--extra-index-url https://download.pytorch.org/whl/cu118
|
| 2 |
+
torch
|
| 3 |
torchvision
|
| 4 |
torchaudio
|
| 5 |
xformers==0.0.25.post1
|
requirements.txt
CHANGED
|
@@ -13,4 +13,5 @@ plyfile
|
|
| 13 |
omegaconf
|
| 14 |
jaxtyping
|
| 15 |
gradio
|
| 16 |
-
spaces
|
|
|
|
|
|
| 13 |
omegaconf
|
| 14 |
jaxtyping
|
| 15 |
gradio
|
| 16 |
+
spaces
|
| 17 |
+
opencv-python
|