File size: 25,830 Bytes
ef33138
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526

import torch
import torch.nn as nn
import os
import json
import torch.nn.functional as F
import random
from torch.utils.data import Dataset
from transformers import AutoTokenizer
from glob import glob
import math
from PIL import Image
device = torch.device('cuda')
import numpy as np
from typing import Any, Dict, List, Optional, Tuple, Union

import torch
import torch.nn as nn

from diffusers.utils import logging
from diffusers.models.embeddings import PatchEmbed
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.models.attention import BasicTransformerBlock
from diffusers.models.normalization import AdaLayerNormContinuous
from torchvision import transforms
    
def add_hook_to_module(model, module_name):
    outputs = []
    def hook(module, input, output):
        outputs.append(output)
    module = dict(model.named_modules()).get(module_name)
    if module is None:
        raise ValueError(f"can't find module {module_name}")
    hook_handle = module.register_forward_hook(hook)
    return hook_handle, outputs

class PromptSD35Net(nn.Module):

    def __init__(self,         
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 16,
        num_layers: int = 8,
        attention_head_dim: int = 64,
        num_attention_heads: int = 24,
        out_channels: int = 16,
        pos_embed_max_size: int = 192
        ):
        super().__init__()
        self.sample_size = sample_size
        self.patch_size = patch_size
        self.in_channels = in_channels
        self.num_layers = num_layers
        self.attention_head_dim = attention_head_dim
        self.num_attention_heads = num_attention_heads
        self.out_channels = out_channels
        self.pos_embed_max_size = pos_embed_max_size
        self.inner_dim = self.num_attention_heads * self.attention_head_dim
        
        self.pos_embed = PatchEmbed(
            height=self.sample_size,
            width=self.sample_size,
            patch_size=self.patch_size,
            in_channels=self.in_channels,
            embed_dim=self.inner_dim,
            pos_embed_max_size=pos_embed_max_size
        )
        
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.num_attention_heads,
                    attention_head_dim=self.attention_head_dim,
                    ff_inner_dim=2*self.inner_dim   # mult should be 4 by default
                )
                for i in range(self.num_layers)
            ]
        )
        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
        
        self.noise_shape = (1, 16, 128, 128) # (667, 4096)
        self.pre8_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre16_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre24_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))

        self.pre8_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre16_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre24_linear2 = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        
        self.last_linear = nn.Sequential(nn.Linear(4096, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        # self.last_linear2 = nn.Sequential(nn.Linear(667, 32))
        self.skip_connection2 = nn.Linear(4096, 1, bias=False)
        self.skip_connection = nn.Linear(667, 32, bias=False)
        self.trans_linear = nn.Linear(666+1+4096, 1536, bias=False)
        nn.init.constant_(self.skip_connection.weight.data, 0)
        nn.init.constant_(self.trans_linear.weight.data, 0)
        nn.init.constant_(self.trans_linear.weight.data, 0)
        nn.init.constant_(self.pre8_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre16_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre24_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre8_linear2[-1].weight.data, 0)
        nn.init.constant_(self.pre16_linear2[-1].weight.data, 0)
        nn.init.constant_(self.pre24_linear2[-1].weight.data, 0)

    def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor:
        
        assert noise is not None
        _ori_v = _v.clone()
        _v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0)
        positive_embedding = _s.permute(0, 2, 1) @ _v @ _d # [2, 64, 666] [2, 64] [2, 64, 4096]
        pool_embedding = _pool_embedding[:, None, :]
        embedding = torch.cat([positive_embedding, pool_embedding], dim=1)
        bs = noise.shape[0]
        height, width = noise.shape[-2:]
        embed_8 = embedding
        embed_16 = embedding
        embed_24 = embedding
        scale_8 = self.pre8_linear2(embed_8).mean(1)
        scale_16 = self.pre16_linear2(embed_16).mean(1)
        scale_24 = self.pre24_linear2(embed_24).mean(1)
        embed_8 = self.pre8_linear(embed_8).mean(1)
        embed_16 = self.pre16_linear(embed_16).mean(1)
        embed_24 = self.pre24_linear(embed_24).mean(1)
        embed_last = self.last_linear(embedding).mean(1)
        embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1)
        skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1)
        scale_skip, embed_skip = skip_embedding.chunk(2,dim=1)
        
        ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None]
        noise = self.pos_embed(noise)        
        noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :]
        scale_list = [scale_16, scale_24]
        embed_list = [embed_16, embed_24]
        for _ii, block in enumerate(self.transformer_blocks):
            noise = block(noise)  
            if len(scale_list)!=0 and len(embed_list)!=0:
                noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :]
        
        hidden_states = noise
        hidden_states = self.norm_out(hidden_states, embed_last)
        hidden_states = self.proj_out(hidden_states)

        # unpatchify
        patch_size = self.patch_size
        height = height // patch_size
        width = width // patch_size
    
        hidden_states = hidden_states.reshape(
            shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
        )
        return output + ori_noise

    def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False):
        return load_filtered_state_dict(self, state_dict)

class PromptSDXLNet(nn.Module):

    def __init__(self,         
        sample_size: int = 128,
        patch_size: int = 2,
        in_channels: int = 4,
        num_layers: int = 4,
        attention_head_dim: int = 64,
        num_attention_heads: int = 24,
        out_channels: int = 4,
        pos_embed_max_size: int = 192
        ):
        super().__init__()
        self.sample_size = sample_size
        self.patch_size = patch_size
        self.in_channels = in_channels
        self.num_layers = num_layers
        self.attention_head_dim = attention_head_dim
        self.num_attention_heads = num_attention_heads
        self.out_channels = out_channels
        self.pos_embed_max_size = pos_embed_max_size
        self.inner_dim = self.num_attention_heads * self.attention_head_dim
        
        self.pos_embed = PatchEmbed(
            height=self.sample_size,
            width=self.sample_size,
            patch_size=self.patch_size,
            in_channels=self.in_channels,
            embed_dim=self.inner_dim,
            pos_embed_max_size=pos_embed_max_size
        )
        
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    dim=self.inner_dim,
                    num_attention_heads=self.num_attention_heads,
                    attention_head_dim=self.attention_head_dim,
                    ff_inner_dim=2*self.inner_dim   # mult should be 4 by default
                )
                for i in range(self.num_layers)
            ]
        )
        self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
        self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
        
        self.noise_shape = (1, 4, 128, 128) 
        self.pre8_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre16_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre24_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))

        self.pre8_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre16_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        self.pre24_linear2 = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        
        self.last_linear = nn.Sequential(nn.Linear(2048, 128), nn.SiLU(), nn.LayerNorm(128), nn.Linear(128, 1536))
        # self.last_linear2 = nn.Sequential(nn.Linear(667, 32))
        self.skip_connection2 = nn.Linear(2048, 1, bias=False)
        self.skip_connection = nn.Linear(154+1, 8, bias=False)
        self.trans_linear = nn.Linear(154+1+2048, 1536, bias=False)
        self.pool_prompt_linear = nn.Linear(2560, 2048, bias=False)
        nn.init.constant_(self.skip_connection.weight.data, 0)
        nn.init.constant_(self.trans_linear.weight.data, 0)
        nn.init.constant_(self.trans_linear.weight.data, 0)
        nn.init.constant_(self.pre8_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre16_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre24_linear[-1].weight.data, 0)
        nn.init.constant_(self.pre8_linear2[-1].weight.data, 0)
        nn.init.constant_(self.pre16_linear2[-1].weight.data, 0)
        nn.init.constant_(self.pre24_linear2[-1].weight.data, 0)

    def forward(self, noise: torch.Tensor, _s, _v, _d, _pool_embedding) -> torch.Tensor:
        
        assert noise is not None
        _ori_v = _v.clone()
        _v = torch.stack([torch.diag(_v[jj]) for jj in range(_v.shape[0])], dim=0)
        positive_embedding = _s.permute(0, 2, 1) @ _v @ _d # [2, 64, 154] [2, 64] [2, 64, 2048]
        pool_embedding = self.pool_prompt_linear(_pool_embedding[:, None, :])
        embedding = torch.cat([positive_embedding, pool_embedding], dim=1)
        bs = noise.shape[0]
        height, width = noise.shape[-2:]
        embed_8 = embedding
        embed_16 = embedding
        embed_24 = embedding
        scale_8 = self.pre8_linear2(embed_8).mean(1)
        scale_16 = self.pre16_linear2(embed_16).mean(1)
        scale_24 = self.pre24_linear2(embed_24).mean(1)
        embed_8 = self.pre8_linear(embed_8).mean(1)
        embed_16 = self.pre16_linear(embed_16).mean(1)
        embed_24 = self.pre24_linear(embed_24).mean(1)
        embed_last = self.last_linear(embedding).mean(1)
        embed_trans = self.trans_linear(torch.cat([_s, _ori_v[...,None], _d], dim=2)).mean(1)
        skip_embedding = self.skip_connection(self.skip_connection2(embedding).permute(0,2,1)).permute(0,2,1)
        scale_skip, embed_skip = skip_embedding.chunk(2,dim=1)
        
        ori_noise = noise * (scale_skip[...,None]) + embed_skip[...,None]
        noise = self.pos_embed(noise)        
        noise = noise * (1 + scale_8[:, None, :] + embed_trans[:, None, :]) + embed_8[:, None, :]
        scale_list = [scale_16, scale_24]
        embed_list = [embed_16, embed_24]
        for _ii, block in enumerate(self.transformer_blocks):
            noise = block(noise)  
            if len(scale_list)!=0 and len(embed_list)!=0:
                noise = noise * (1 + scale_list[int(_ii//4)][:, None, :] + embed_trans[:, None, :]) + embed_list[int(_ii//4)][:, None, :]
        
        hidden_states = noise
        hidden_states = self.norm_out(hidden_states, embed_last)
        hidden_states = self.proj_out(hidden_states)

        # unpatchify
        patch_size = self.patch_size
        height = height // patch_size
        width = width // patch_size
    
        hidden_states = hidden_states.reshape(
            shape=(hidden_states.shape[0], height, width, patch_size, patch_size, self.out_channels)
        )
        hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
        output = hidden_states.reshape(
            shape=(hidden_states.shape[0], self.out_channels, height * patch_size, width * patch_size)
        )
        return output + ori_noise

    def weak_load_state_dict(self, state_dict: os.Mapping[str, torch.any], strict: bool = True, assign: bool = False):
        return load_filtered_state_dict(self, state_dict)


class NoisePromptDataset(Dataset):
    def __init__(self, if_weight=False):
        
        self.if_weight = if_weight
        json_list = glob('/home/xiedian/total_datacollect/json/*.json')
        self.original_score = []
        self.optim_score = []
        self.prompt = []
        self.noise_paths = []
        self.mask_conditions = []
        self.embeddings = []
        counter = 0
        for i in range(len(json_list)):
            with open('//home/xiedian/total_datacollect/json/new{:06d}.json'.format(i), 'r') as f:
                data = json.load(f)
            self.original_score.append(data['original_score_list'])
            self.optim_score.append(data['optimized_score_list'])
            if data['optimized_score_list']>data['original_score_list']:
                counter += 1
            self.prompt.append(data['caption'])
            self.noise_paths.append('/home/xiedian/total_datacollect/latents/{:06d}.pt'.format(i))
            self.embeddings.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/embedding/embeds_{:06d}.pt'.format(i))
            z = [0, 1] * ((512+77+77) // 2)
            self.mask_conditions.append(data['mid_token_ids'] if 'mid_token_ids' in data else z)
        # while counter * 2 > len(self.prompt):
        #     p = random.randint(0,len(self.prompt)-1)
        #     if self.original_score[p] >  self.optim_score[p]:
        #         self.optim_score.append(self.optim_score[p])
        #         self.original_score.append(self.original_score[p])
        #         self.mask_conditions.append(self.mask_conditions[p])
        #         self.noise_paths.append(self.noise_paths[p])
        #         self.prompt.append(self.prompt[p])
        
        # while counter * 2 < len(self.prompt):
        #     p = random.randint(0,len(self.prompt)-1)
        #     if self.original_score[p] >  self.optim_score[p]:
        #         self.optim_score.append(self.optim_score[p])
        #         self.original_score.append(self.original_score[p])
        #         self.mask_conditions.append(self.mask_conditions[p])
        #         self.noise_paths.append(self.noise_paths[p])
        #         self.prompt.append(self.prompt[p])
        
        self.original_score = torch.Tensor(self.original_score)
        self.optim_score = torch.Tensor(self.optim_score)
                
    def __len__(self):
        return len(self.prompt)

    def __getitem__(self, index):
        try:
            noise = torch.load(self.noise_paths[index], map_location='cpu').squeeze(0).float()
            noise_pred_uncond, mid_noise_pred, noise_pred_text = noise.chunk(3,dim=0)
            prompt = self.prompt[index]
            original_score = self.original_score[index]
            optim_score = self.optim_score[index]
            embedding = torch.load(self.embeddings[index], map_location='cpu')
            _s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['pooled_prompt_embeds']
            _s = _s.detach().float()
            _v = _v.detach().float()
            _d = _d.detach().float()
            _pool_embedding = _pool_embedding.detach().float()
            if original_score > optim_score:
                noise_pred = noise_pred_uncond + 4.5 * (noise_pred_text - noise_pred_uncond)
            else:
                guidance_scale = 4.5 * 1.6
                diff_text = torch.norm(noise_pred_text - noise_pred_uncond)
                mid_guidance_scale = (diff_text / torch.norm(noise_pred_text - mid_noise_pred)).item()
                guidance_scale_mid = guidance_scale / (2.4 + 1)
                guidance_scale_all = guidance_scale * 2.4 / (2.4 + 1)
                all_mid = (noise_pred_text - mid_noise_pred) * mid_guidance_scale
                all_null = noise_pred_text - noise_pred_uncond
                noise_pred = all_mid * guidance_scale_mid + all_null * guidance_scale_all + (mid_noise_pred + noise_pred_uncond) / 2
        except:
            print("error", index)
            return self.__getitem__((index+1)%len(self.prompt))
        if self.if_weight:
            return noise_pred_text, prompt, noise_pred, 2 / (1+ math.exp((-abs(original_score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding
        else:
            return noise_pred_text, prompt, noise_pred, _s, _v, _d, _pool_embedding

class NoisePromptDataset_2_0(Dataset):
    def __init__(self, if_weight=False):
        
        self.if_weight = if_weight
        json_list = glob('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/json/*.json')
        self.original_score = []
        self.quick_score = []
        self.slow_score = []
        self.prompt = []
        self.noise_paths = []
        self.mask_conditions = []
        self.img_list = []
        self.embeddings = []
        
        counter = 0
        for i in range(len(json_list)):
            with open('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/json/new{:06d}.json'.format(i), 'r') as f:
                data = json.load(f)
            if (not os.path.exists('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/latents/{:06d}.pt'.format(i))) or \
                max(data['original_score_list'], data['quick_score_list'], data['slow_score_list']) != data['original_score_list']:
                continue
            self.original_score.append(data['original_score_list'])
            self.quick_score.append(data['quick_score_list'])
            self.slow_score.append(data['slow_score_list'])
            self.prompt.append(data['caption'])
            self.noise_paths.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/latents/{:06d}.pt'.format(i))
            z = [0, 1] * ((512+77+77) // 2)
            self.mask_conditions.append(data['mid_token_ids'] if 'mid_token_ids' in data else z)
            if data['original_score_list'] >= max(data['quick_score_list'], data['slow_score_list']):
                self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/original{:06d}.png'.format(i))
            elif data['quick_score_list'] >= max(data['original_score_list'], data['slow_score_list']):
                self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/quick{:06d}.png'.format(i))
            else:
                self.img_list.append('/data/xiedian/hg_reward/newdatacollect/total_datacollect_step_1_1/optim/slow{:06d}.png'.format(i))
            self.embeddings.append('/home/xiedian/total_datacollect/embedding/embeds_{:06d}.pt'.format(i))
        self.original_score = torch.Tensor(self.original_score)
        self.quick_score = torch.Tensor(self.quick_score)
        self.slow_score = torch.Tensor(self.slow_score)
            
    def __len__(self):
        return len(self.prompt)

    def __getitem__(self, index):
        try:
            original_score = self.original_score[index]
            quick_score = self.quick_score[index]
            slow_score = self.slow_score[index]
            original_score = max(max(quick_score, slow_score), original_score)
            embedding = torch.load(self.embeddings[index], map_location='cpu')
            _s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['pooled_prompt_embeds']
            _s = _s.detach().float()
            _v = _v.detach().float()
            _d = _d.detach().float()
            _pool_embedding = _pool_embedding.detach().float()
            noise = torch.load(self.noise_paths[index], map_location='cpu').squeeze(0).float()
            noise_pred_text, noise_pred = noise.chunk(2,dim=0)
            prompt = self.prompt[index]
        except:
            print("error", index)
            return self.__getitem__((index+1)%len(self.prompt))
        if self.if_weight:
            return noise_pred_text, prompt, noise_pred, 2 / (1+ math.exp((-abs(original_score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding
        else:
            return noise_pred_text, prompt, noise_pred, _s, _v, _d, _pool_embedding

class NoisePromptDataset_3_0(Dataset):
    def __init__(self, if_weight=False):
        
        self.if_weight = if_weight
        json_list = glob('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/json/*.json')
        self.score = []
        self.prompt = []
        self.noise_paths = []
        self.mask_conditions = []
        self.img_list = []
        self.embeddings = []
        
        print(len(json_list))
        
        for i in range(len(json_list)):
            if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/embedding/{:06d}.pt'.format(i))):
                continue
            
            with open('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/json/new{:06d}.json'.format(i), 'r') as f:
                data = json.load(f)
            if data['original_score_list'] > data['optimized_score_list']:
                tag = 0
                if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/original{:06d}.pt'.format(i))):
                    continue
            else:
                tag = 1
                if (not os.path.exists('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/new{:06d}.pt'.format(i))):
                    continue
            
            if tag == 1:
                self.score.append(data['optimized_score_list'])
                self.noise_paths.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/new{:06d}.pt'.format(i))
            else:
                self.score.append(data['original_score_list'])
                self.noise_paths.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/latents/original{:06d}.pt'.format(i))
            self.prompt.append(data['caption'])
            self.embeddings.append('/data/xiedian/hg_reward/CFG_TOTAL/total_datacollect/embedding/{:06d}.pt'.format(i))
        self.score = torch.Tensor(self.score)
            
    def __len__(self):
        return len(self.prompt)

    def __getitem__(self, index):
        try:
            embedding = torch.load(self.embeddings[index], map_location='cpu')
            _s, _v, _d, _pool_embedding = embedding['_s'], embedding['_v'], embedding['_d'], embedding['_pooled_prompt_embeds']
            _s = _s.detach().float()
            _v = _v.detach().float()
            _d = _d.detach().float()
            _pool_embedding = _pool_embedding.detach().float()
            noise = torch.load(self.noise_paths[index], map_location='cpu').float() # [2XT, 16, 128, 128]
            prompt = self.prompt[index] # [ori, target, ori]
            score = self.score[index]
        except:
            print("error", index)
            return self.__getitem__((index+1)%len(self.prompt))
        if self.if_weight:
            return noise, prompt, 2 / (1+ math.exp((-abs(score) + 26.5)/1.7)), _s, _v, _d, _pool_embedding
        else:
            return noise, prompt, _s, _v, _d, _pool_embedding


def load_filtered_state_dict(model, state_dict):
    model_state_dict = model.state_dict()
    filtered_state_dict = {}
    for k, v in state_dict.items():
        if k in model_state_dict:
            if model_state_dict[k].size() == v.size():
                filtered_state_dict[k] = v
            else:
                print(f"Skipping {k}: shape mismatch ({model_state_dict[k].size()} vs {v.size()})")
        else:
            print(f"Skipping {k}: not found in model's state_dict.")
    model.load_state_dict(filtered_state_dict, strict=False)
    return model

def custom_collate_fn_2_0(batch):
    noise_pred_texts, prompts, noise_preds, max_scores = zip(*batch)
    
    noise_pred_texts = torch.stack(noise_pred_texts)
    noise_preds = torch.stack(noise_preds)
    max_scores = torch.stack(max_scores)
    
    return noise_pred_texts, prompts, noise_preds, max_scores


if __name__ == "__main__":
    dataset = NoisePromptDataset(if_weight=True)
    weights = []
    for i, (noise, prompt, gt, weight) in enumerate(dataset):
        weights.append(weight)
    weights = torch.from_numpy(np.array(weights)).cuda()
    print(weights.mean(), weights.std(dim=0))