File size: 17,851 Bytes
4e909c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
<div align="center">

<img src="./Assets/laddr.svg" alt="Laddr Logo" width="360" height="">

**Your framework for building scalable multi-agent systems**

[![License: Apache 2.0](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Python 3.10+](https://img.shields.io/badge/python-3.10+-blue.svg)](https://www.python.org/downloads/)
[![Docker](https://img.shields.io/badge/docker-optional-blue.svg)](https://www.docker.com/)
[![FastAPI](https://img.shields.io/badge/FastAPI-0.115+-green.svg)](https://fastapi.tiangolo.com/)
[![Redis](https://img.shields.io/badge/redis-7.0+-red.svg)](https://redis.io/)
[![PostgreSQL](https://img.shields.io/badge/postgresql-15+-blue.svg)](https://www.postgresql.org/)

[Quick Start](#quick-start) โ€ข [Features](#features) โ€ข [Agent Example](#agent-example) โ€ข [Tool Example](#tool-example) โ€ข [Dashboard](#dashboard--observability)

<img src="./Assets/dashboard.png" alt="Laddr Logo" width="600" height="315">

</div>

---

## Table of Contents

- [What is Laddr?](#what-is-laddr)
- [Features](#features)
- [Quick Start](#quick-start)
- [Agent Example](#agent-example)
- [Tool Example](#tool-example)
- [FastAPI Runtime](#fastapi-runtime--rest-api)
- [Dashboard & Observability](#dashboard--observability)
- [Architecture](#architecture)
- [License](#license)

---

## What is Laddr?

Laddr is a python framework for building **multi-agent systems** where agents communicate, delegate tasks, and execute work in parallel. Think of it as a microservices architecture for AI agents โ€” with built-in message queues, observability, and horizontal scalability.

### Two Operating Modes

**Coordinator-Orchestrator Mode**  
Dynamic, autonomous workflows where a coordinator agent analyzes tasks, delegates to specialist agents, and synthesizes results. The coordinator makes real-time decisions about routing and orchestration.

**Sequential Deterministic Workflow Mode**  
Pre-defined, predictable pipelines where tasks flow through agents in a fixed sequence. Each step is explicitly defined with inputs, outputs, and dependencies.

---

## Features

### Scalability & Performance
- **Horizontal scaling** โ€” Scale each agent independently based on workload
- **Multi-worker support** โ€” Run multiple workers per agent for high throughput
- **Automatic load balancing** โ€” Redis Streams distribute tasks across workers
- **Fault tolerance** โ€” Worker failures don't stop the system

### Observability & Monitoring
- **Complete tracing** โ€” Every agent action automatically logged to PostgreSQL
- **Real-time metrics** โ€” Job status, duration, success rates, queue depth
- **Interactive dashboard** โ€” Beautiful UI to monitor agents, traces, and logs
- **Playground** โ€” Test agents interactively with live streaming responses

### Developer Experience
- **Clean CLI** โ€” Minimal, modern interface for project management
- **Hot reload** โ€” Code changes reflect instantly in development mode
- **Type safety** โ€” Full Python type hints throughout the codebase
- **Simple setup** โ€” One command (`laddr init`) to scaffold complete projects

### AI-Optimized Architecture
- **Built-in delegation** โ€” Agents can delegate tasks to other agents seamlessly
- **Parallel execution** โ€” Process multiple independent tasks simultaneously
- **Context management** โ€” Automatic artifact storage for large payloads (>1MB)
- **Smart retries** โ€” Configurable retry logic and timeout handling per agent

### Production Ready
- **Docker native** โ€” Everything runs in containers with docker-compose
- **Queue-based messaging** โ€” Redis Streams for reliable, distributed communication
- **Artifact storage** โ€” MinIO/S3 for handling large files and documents
- **REST API** โ€” FastAPI server with auto-generated OpenAPI documentation

### Extensibility
- **Custom tools** โ€” Add any Python function as an agent tool with `@tool` decorator
- **Override system tools** โ€” Extend delegation and storage with your own implementations
- **LLM agnostic** โ€” Works with Gemini, OpenAI, Anthropic, Groq, Ollama, and local models
- **Pluggable backends** โ€” Swap Redis, PostgreSQL, or storage providers easily

---

## Quick Start

### Installation

```bash
pip install laddr
```

### Create Your First Project

```bash
# Initialize a new project
laddr init my-agent-system
cd my-agent-system
```

### Configure API Keys

Edit `.env` file:

```bash
# Required for web search tools
SERPER_API_KEY=your_serper_api_key  # Get from https://serper.dev

# LLM API Keys (choose one or more)
GEMINI_API_KEY=your_gemini_key      # Get from https://aistudio.google.com
OPENAI_API_KEY=your_openai_key      # Get from https://platform.openai.com

# Or use Ollama for local models (free, private, offline)
# Install: curl -fsSL https://ollama.ai/install.sh | sh
# Then: ollama pull gemma2:2b
OLLAMA_BASE_URL=http://localhost:11434
LLM_BACKEND=ollama  # Use local models instead of cloud APIs
```

> ๐Ÿ’ก **Using Ollama?** See the [Ollama Integration Guide](docs/guides/ollama-integration.md) for complete setup instructions including Docker configuration.

### Start the System

```bash
# Start all services (API, workers, database, Redis, MinIO)
laddr run dev
```

This starts:
- โœ… **API Server** at `http://localhost:8000`
- โœ… **Dashboard** at `http://localhost:5173`
- โœ… **PostgreSQL** for traces and job history
- โœ… **Redis** for message queue
- โœ… **MinIO** for artifact storage
- โœ… **2 agents**: `coordinator` (orchestrator) and `researcher` (specialist)

### Test Your Agents

Open the dashboard at **http://localhost:5173/playground** or use the API:

```bash
curl -X POST http://localhost:8000/api/jobs \
  -H "Content-Type: application/json" \
  -d '{
    "agent_name": "coordinator",
    "inputs": {
      "query": "What are the best hotels in Shimla?"
    }
  }'
```

---

## Agent Example

Agents are defined in simple Python files. Here's what `laddr init` generates:

```python
"""
Coordinator agent - orchestrates research tasks
"""
from laddr import Agent
from laddr.llms import gemini

coordinator = Agent(
    name="coordinator",
    role="Research Task Coordinator",
    goal="Coordinate research tasks by delegating to specialist agents",
    backstory="""You are a research coordinator who manages information 
    gathering tasks. You delegate specific queries to researcher agents 
    and compile their findings into comprehensive summaries.""",
    
    llm=gemini("gemini-2.0-flash"),
    
    # Coordinator can delegate to other agents
    is_coordinator=True,
    available_agents=["researcher"],
    
    # Behavior settings
    max_iterations=15,
    max_tool_calls=50,
    timeout=600,
    
    # Built-in delegation tools provided automatically
    tools=[],
    
    instructions="""
    ## Your workflow:
    1. Receive user query
    2. Delegate research to 'researcher' agent using system_delegate_task
    3. Wait for results (use wait_for_response=true)
    4. Synthesize findings into comprehensive answer
    5. Return final result to user
    
    ## Delegation format:
    {
      "type": "tool",
      "tool": "system_delegate_task",
      "params": {
        "agent_name": "researcher",
        "task": "Search for best hotels in Shimla with reviews",
        "wait_for_response": true,
        "timeout_seconds": 90
      }
    }
    """
)
```

**Key Features:**
- **Coordinators** delegate work to specialists
- **Specialists** use tools to complete tasks
- **LLM-powered** decision making
- **Configurable** behavior and limits
- **Clear instructions** guide agent behavior

---

## Tool Example

Tools are Python functions that agents can call. Here's a web search tool from the template:

```python
"""
Web search tool using Serper.dev API
"""
from typing import Dict
import os
import requests
from laddr import tool

@tool(
    name="web_search",
    description="Search the web using Serper.dev API. Returns title, URL, and snippet for each result.",
    parameters={
        "type": "object",
        "properties": {
            "query": {
                "type": "string",
                "description": "Search query (be specific for better results)"
            },
            "max_results": {
                "type": "integer",
                "description": "Maximum number of results (1-10, default 5)",
                "default": 5
            }
        },
        "required": ["query"]
    }
)
def web_search(query: str, max_results: int = 5) -> Dict:
    """
    Search the web and return structured results.
    
    Returns:
        {
            "query": str,
            "results": [
                {
                    "title": str,
                    "link": str,
                    "snippet": str,
                    "site": str
                },
                ...
            ],
            "count": int,
            "status": "success" | "error"
        }
    """
    api_key = os.getenv("SERPER_API_KEY")
    if not api_key:
        return {
            "status": "error",
            "error": "SERPER_API_KEY not set"
        }
    
    response = requests.post(
        "https://google.serper.dev/search",
        headers={
            "X-API-KEY": api_key,
            "Content-Type": "application/json",
        },
        json={"q": query, "num": max_results},
        timeout=15,
    )
    response.raise_for_status()
    data = response.json()
    
    results = []
    for item in data.get("organic", [])[:max_results]:
        results.append({
            "title": item.get("title", ""),
            "link": item.get("link", ""),
            "snippet": item.get("snippet", "")[:500],
            "site": item.get("domain", "")
        })
    
    return {
        "query": query,
        "results": results,
        "count": len(results),
        "status": "success"
    }
```

**Features:**
- **@tool decorator** โ€” Automatic registration
- **JSON Schema** โ€” Parameters defined with validation
- **Structured output** โ€” Consistent return format
- **Fast** โ€” 15 second timeout
- **Error handling** โ€” Graceful failures

---

## FastAPI Runtime & REST API

Laddr includes a **production-ready FastAPI server** with comprehensive REST endpoints:

### Core Endpoints

| Method | Endpoint | Description |
|--------|----------|-------------|
| `POST` | `/api/jobs` | Submit a job to an agent |
| `GET` | `/api/jobs/{job_id}` | Get job status and result |
| `GET` | `/api/jobs` | List all jobs with filters |
| `POST` | `/api/jobs/{job_id}/replay` | Replay a failed job |
| `GET` | `/api/agents` | List all available agents |
| `GET` | `/api/agents/{agent_name}/tools` | Get agent's tools |
| `GET` | `/api/agents/{agent_name}/chat` | Interactive chat with agent |

### Observability Endpoints

| Method | Endpoint | Description |
|--------|----------|-------------|
| `GET` | `/api/traces` | Get execution traces for jobs |
| `GET` | `/api/traces/grouped` | Get traces grouped by job |
| `GET` | `/api/traces/{trace_id}` | Get specific trace details |
| `GET` | `/api/metrics` | Get system metrics (jobs, latency, success rate) |
| `GET` | `/api/logs/containers` | List Docker containers |
| `GET` | `/api/logs/containers/{name}` | Stream container logs |

### Playground Endpoints

| Method | Endpoint | Description |
|--------|----------|-------------|
| `POST` | `/api/prompts` | Create interactive prompt session |
| `GET` | `/api/prompts/{prompt_id}` | Get prompt status and messages |
| `GET` | `/api/prompts` | List all prompt sessions |
| `POST` | `/api/prompts/{prompt_id}/cancel` | Cancel running prompt |

### Example: Submit a Job

```bash
curl -X POST http://localhost:8000/api/jobs \
  -H "Content-Type: application/json" \
  -d '{
    "agent_name": "researcher",
    "inputs": {
      "query": "Latest AI trends 2025"
    }
  }'

# Response:
{
  "job_id": "job_abc123",
  "status": "queued",
  "created_at": "2025-01-15T10:30:00Z"
}
```

### Example: Get Job Result

```bash
curl http://localhost:8000/api/jobs/job_abc123

# Response:
{
  "job_id": "job_abc123",
  "status": "completed",
  "result": {
    "answer": "Based on my research, the top AI trends in 2025 are...",
    "sources": [...]
  },
  "agent_name": "researcher",
  "created_at": "2025-01-15T10:30:00Z",
  "completed_at": "2025-01-15T10:31:45Z",
  "duration_seconds": 105
}
```

### Interactive API Documentation

Full OpenAPI documentation available at:

http://localhost:8000/docs โ€” Swagger UI  
---

## Dashboard & Observability

Laddr includes a **beautiful React dashboard** with real-time monitoring:

### Dashboard Features

 **Playground**
- Test agents interactively
- Live streaming responses
- Token usage tracking
- Save and replay sessions

 **Traces**
- Complete execution history
- Tool calls and results
- LLM interactions
- Delegation flows
- Filter by job, agent, or time range

 **Metrics**
- System health overview
- Jobs per agent (success/failed)
- Average latency per agent
- Queue depth monitoring
- Worker status

 **Logs**
- Real-time container logs
- Filter by agent or service
- Error highlighting
- Download logs

 **Agents**
- List all agents and their tools
- Agent configuration viewer
- Worker scaling controls
- Health status

### Access the Dashboard

```bash
# Start the system
laddr run dev

# Open dashboard in browser
open http://localhost:5173
```

**Views:**
- `/` โ€” Dashboard home with metrics
- `/playground` โ€” Interactive agent testing
- `/traces` โ€” Execution traces and history
- `/agents` โ€” Agent management
- `/logs` โ€” Container logs viewer
- `/settings` โ€” Configuration

---

## Architecture

### Message Bus (Redis Streams)

Laddr uses **Redis Streams** for reliable, distributed messaging:

- **Agent Queues** โ€” Each agent has a dedicated stream (`laddr:agent:{name}`)
- **Response Streams** โ€” Temporary streams for delegation responses
- **Consumer Groups** โ€” Multiple workers consume from the same stream
- **Automatic Load Balancing** โ€” Redis distributes tasks across workers
- **Persistence** โ€” Messages persisted until acknowledged
- **Backpressure** โ€” Queue depth monitoring prevents overload

**Example flow:**
```
API โ†’ Redis Stream โ†’ Worker 1, Worker 2, Worker 3
                      โ†“
                    Process task
                      โ†“
                 Store result in Postgres
```

### Trace Storage (PostgreSQL)

All agent executions are **automatically traced** to PostgreSQL:

- **Complete history** โ€” Every tool call, LLM interaction, delegation
- **Structured data** โ€” JSON traces with metadata
- **Fast queries** โ€” Indexed by job_id, agent_name, timestamp
- **No external dependencies** โ€” Built-in, no Jaeger or DataDog needed
- **Retention policies** โ€” Configurable trace retention

**Trace data includes:**
- Tool calls and results
- LLM prompts and responses
- Delegation events
- Error stack traces
- Token usage
- Latency breakdown

### Artifact Storage (MinIO/S3)

Large payloads are **automatically stored** in object storage:

- **Automatic threshold** โ€” Messages >1MB stored as artifacts
- **S3-compatible** โ€” MinIO (local) or AWS S3 (production)
- **Efficient messaging** โ€” Only artifact reference sent via Redis
- **Retrieval on demand** โ€” Workers fetch artifacts when needed
- **Configurable** โ€” Set size threshold, retention, bucket names

**Benefits:**
- Reduces Redis memory usage
- Prevents message size limits
- Enables large document processing
- Supports binary data (images, PDFs, etc.)

---

## Custom System Tools

Laddr allows you to **override built-in system tools** (delegation, artifact storage) with your own custom implementations:

```python
from laddr import override_system_tool, TaskDelegationTool

@override_system_tool("system_delegate_task")
async def custom_delegation(
    agent_name: str,
    task_description: str,
    task: str,
    task_data: dict = None,
    timeout_seconds: int = 300,
    _message_bus=None,
    _artifact_storage=None,
    _agent=None
):
    """Custom delegation with logging and metrics."""
    
    # Add your custom logic (logging, rate limiting, etc.)
    logger.info(f"Delegating to {agent_name}: {task_description}")
    
    # Reuse base tool for actual delegation
    delegation_tool = TaskDelegationTool(_message_bus, _artifact_storage, _agent)
    result = await delegation_tool.delegate_task(
        agent_name=agent_name,
        task_description=task_description,
        task=task,
        task_data=task_data,
        timeout_seconds=timeout_seconds
    )
    
    logger.info(f"Delegation completed: {result}")
    return result
```

**Available base tools:**
- `TaskDelegationTool` โ€” Single-task delegation
- `ParallelDelegationTool` โ€” Parallel multi-task delegation
- `ArtifactStorageTool` โ€” Artifact storage and retrieval

**System tools you can override:**
- `system_delegate_task` โ€” Single task delegation
- `system_delegate_parallel` โ€” Parallel task delegation
- `system_store_artifact` โ€” Store data artifacts
- `system_retrieve_artifact` โ€” Retrieve data artifacts

**Learn more:** See the [Custom System Tools Guide](docs/guides/custom-system-tools.md) for complete documentation with advanced patterns like rate limiting, circuit breakers, retries, and metrics.

---



## License

Apache License 2.0 - see [LICENSE](LICENSE) for details.

---

## ๐Ÿ”— Links

- **Visit us at AgnetLabs**: https://agnetlabs.com
- **Documentation**: https://laddr.agnetlabs.com
- **GitHub**: https://github.com/AgnetLabs/Laddr
- **Issues**: https://github.com/AgnetLabs/Laddr/issues

---

<div align="center">

**Built for production. Designed for scale. Made transparent.**

โญ **Star us on GitHub** if Laddr helps you build better agent systems!

<!-- [Get Started โ†’](https://docs.laddr.dev) | [View Examples โ†’](docs/guides/recipes.md) | [Join Discord โ†’](#) -->

</div>