File size: 25,296 Bytes
31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 08bbb4c 31e3523 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
#!/usr/bin/env python3
"""
Training script for Vietnamese sentiment classification.
Trains TF-IDF + ML models on VLSP2016 sentiment dataset.
This script trains various machine learning models for Vietnamese sentiment analysis.
"""
import argparse
import json
import logging
import os
import time
from datetime import datetime
import numpy as np
from datasets import load_dataset
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.neural_network import MLPClassifier
from sklearn.tree import DecisionTreeClassifier
import joblib
def setup_logging(run_name):
"""Setup logging to save all information to runs folder"""
runs_dir = "runs"
os.makedirs(runs_dir, exist_ok=True)
run_dir = os.path.join(runs_dir, run_name)
os.makedirs(run_dir, exist_ok=True)
log_file = os.path.join(run_dir, "training.log")
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[logging.FileHandler(log_file), logging.StreamHandler()],
)
return run_dir
def load_uts2017_data(split_ratio=0.2, random_state=42, n_samples=None):
"""Load and prepare UTS2017_Bank aspect sentiment dataset
Args:
split_ratio: Ratio for train/test split
random_state: Random seed for reproducibility
n_samples: Optional limit on number of samples
Returns:
Tuple of (X_train, y_train), (X_test, y_test)
"""
print("Loading UTS2017_Bank aspect sentiment dataset from Hugging Face...")
# Load the aspect sentiment subset
dataset = load_dataset("undertheseanlp/UTS2017_Bank", "aspect_sentiment")
# Get the train split (the dataset only has a train split)
train_data = dataset["train"]
# Extract text and aspects (which contains both aspect and sentiment)
texts = []
labels = []
for item in train_data:
text = item["text"]
aspect_data = item["aspects"]
# Handle multiple aspects per text (take the first one for now)
if aspect_data and len(aspect_data) > 0:
aspect = aspect_data[0]["aspect"]
sentiment = aspect_data[0]["sentiment"]
texts.append(text)
labels.append(f"{aspect}#{sentiment}")
# Convert to lists for consistency
texts = list(texts)
labels = list(labels)
# Apply sample limit if specified
if n_samples and n_samples < len(texts):
# Shuffle before sampling to get balanced classes
indices = np.arange(len(texts))
np.random.seed(random_state)
np.random.shuffle(indices)
indices = indices[:n_samples]
texts = [texts[i] for i in indices]
labels = [labels[i] for i in indices]
# Convert to numpy arrays for consistency
X = np.array(texts)
y = np.array(labels)
# Split into train and test sets
# Use stratify only if we have enough samples per class (at least 2)
min_samples_per_class = 2
unique_classes, class_counts = np.unique(y, return_counts=True)
can_stratify = all(count >= min_samples_per_class for count in class_counts)
if can_stratify:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=split_ratio, random_state=random_state, stratify=y
)
else:
print(
f"Warning: Some classes have fewer than {min_samples_per_class} samples. Disabling stratification."
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=split_ratio, random_state=random_state
)
print(f"Dataset loaded: {len(X_train)} train samples, {len(X_test)} test samples")
print(f"Number of unique labels: {len(set(y))}")
return (X_train, y_train), (X_test, y_test)
def load_vlsp2016_data(use_predefined_split=True, split_ratio=0.2, random_state=42, n_samples=None):
"""Load and prepare VLSP2016 sentiment dataset
Args:
use_predefined_split: If True, use the predefined train/test split from the dataset
split_ratio: Ratio for train/test split (only used if use_predefined_split is False)
random_state: Random seed for reproducibility
n_samples: Optional limit on number of samples
Returns:
Tuple of (X_train, y_train), (X_test, y_test)
"""
print("Loading VLSP2016 sentiment dataset from Hugging Face...")
# Load the dataset
dataset = load_dataset("ura-hcmut/vlsp2016")
if use_predefined_split:
# Use the predefined train/test split
train_data = dataset["train"]
test_data = dataset["test"]
# Extract texts and labels
X_train = [item["Data"] for item in train_data]
y_train = [item["Class"] for item in train_data]
X_test = [item["Data"] for item in test_data]
y_test = [item["Class"] for item in test_data]
# Apply sample limit if specified
if n_samples:
if n_samples < len(X_train):
# Shuffle before sampling to get balanced classes
indices = np.arange(len(X_train))
np.random.seed(random_state)
np.random.shuffle(indices)
indices = indices[:n_samples]
X_train = [X_train[i] for i in indices]
y_train = [y_train[i] for i in indices]
if n_samples < len(X_test):
# Proportionally reduce test set with shuffling
test_samples = int(n_samples * 0.2) # Keep similar ratio
indices = np.arange(len(X_test))
np.random.seed(random_state)
np.random.shuffle(indices)
indices = indices[:test_samples]
X_test = [X_test[i] for i in indices]
y_test = [y_test[i] for i in indices]
# Convert to numpy arrays
X_train = np.array(X_train)
y_train = np.array(y_train)
X_test = np.array(X_test)
y_test = np.array(y_test)
else:
# Combine train and test, then create custom split
all_data = list(dataset["train"]) + list(dataset["test"])
# Extract texts and labels
texts = [item["Data"] for item in all_data]
labels = [item["Class"] for item in all_data]
# Apply sample limit if specified
if n_samples and n_samples < len(texts):
texts = texts[:n_samples]
labels = labels[:n_samples]
# Convert to numpy arrays
X = np.array(texts)
y = np.array(labels)
# Split into train and test sets
# Use stratify only if we have enough samples per class (at least 2)
min_samples_per_class = 2
unique_classes, class_counts = np.unique(y, return_counts=True)
can_stratify = all(count >= min_samples_per_class for count in class_counts)
if can_stratify:
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=split_ratio, random_state=random_state, stratify=y
)
else:
print(
f"Warning: Some classes have fewer than {min_samples_per_class} samples. Disabling stratification."
)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=split_ratio, random_state=random_state
)
print(f"Dataset loaded: {len(X_train)} train samples, {len(X_test)} test samples")
print(f"Number of unique labels: {len(set(y_train))}")
print(f"Labels: {sorted(set(y_train))}")
return (X_train, y_train), (X_test, y_test)
def get_available_models():
"""Get available classifier options"""
return {
# Traditional algorithms
"logistic": LogisticRegression(max_iter=1000, random_state=42),
"svc_linear": SVC(kernel="linear", random_state=42, probability=True),
"svc_rbf": SVC(kernel="rbf", random_state=42, probability=True, gamma='scale'),
"naive_bayes": MultinomialNB(),
# Tree-based algorithms
"decision_tree": DecisionTreeClassifier(random_state=42, max_depth=10),
"random_forest": RandomForestClassifier(n_estimators=100, random_state=42, max_depth=10, n_jobs=-1),
# Boosting algorithms
"gradient_boost": GradientBoostingClassifier(n_estimators=100, random_state=42, max_depth=5),
"ada_boost": AdaBoostClassifier(n_estimators=100, random_state=42),
# Neural network
"mlp": MLPClassifier(hidden_layer_sizes=(100, 50), max_iter=500, random_state=42, early_stopping=True),
}
def load_data(dataset_name="vlsp2016", split_ratio=0.2, random_state=42, n_samples=None):
"""Load data from the specified dataset
Args:
dataset_name: Name of the dataset to load ('vlsp2016' or 'uts2017')
split_ratio: Ratio for train/test split
random_state: Random seed for reproducibility
n_samples: Optional limit on number of samples
Returns:
Tuple of (X_train, y_train), (X_test, y_test), dataset_display_name
"""
if dataset_name.lower() == "vlsp2016":
(X_train, y_train), (X_test, y_test) = load_vlsp2016_data(
use_predefined_split=True, split_ratio=split_ratio,
random_state=random_state, n_samples=n_samples
)
display_name = "VLSP2016_Sentiment"
elif dataset_name.lower() == "uts2017":
(X_train, y_train), (X_test, y_test) = load_uts2017_data(
split_ratio=split_ratio, random_state=random_state, n_samples=n_samples
)
display_name = "UTS2017_Bank_AspectSentiment"
else:
raise ValueError(f"Unknown dataset: {dataset_name}. Choose 'vlsp2016' or 'uts2017'")
return (X_train, y_train), (X_test, y_test), display_name
def train_model(
dataset="vlsp2016",
model_name="logistic",
max_features=20000,
ngram_range=(1, 2),
split_ratio=0.2,
n_samples=None,
export_model=False,
):
"""Train a single model with specified parameters
Args:
dataset: Name of the dataset to use ('vlsp2016' or 'uts2017')
model_name: Name of the model to train ('logistic' or 'svc')
max_features: Maximum number of features for TF-IDF vectorizer
ngram_range: N-gram range for feature extraction
split_ratio: Train/test split ratio
n_samples: Optional limit on number of samples
export_model: Whether to export the model for distribution
Returns:
Dictionary containing training results
"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
run_dir = setup_logging(timestamp)
logging.info(f"Starting training run: {timestamp}")
logging.info(f"Dataset: {dataset}")
logging.info(f"Model: {model_name}")
logging.info(f"Max features: {max_features}")
logging.info(f"N-gram range: {ngram_range}")
if n_samples:
logging.info(f"Sample limit: {n_samples}")
# Create output folder for models
output_folder = os.path.join(run_dir, "models")
os.makedirs(output_folder, exist_ok=True)
# Load data
logging.info(f"Loading {dataset} dataset...")
(X_train, y_train), (X_test, y_test), dataset_name = load_data(
dataset_name=dataset, split_ratio=split_ratio, random_state=42, n_samples=n_samples
)
# Get unique labels for reporting
unique_labels = sorted(set(y_train))
label_counts_train = {label: np.sum(y_train == label) for label in unique_labels}
label_counts_test = {label: np.sum(y_test == label) for label in unique_labels}
logging.info(f"Train samples: {len(X_train)}")
logging.info(f"Test samples: {len(X_test)}")
logging.info(f"Unique labels: {len(unique_labels)}")
logging.info(f"Label distribution (train): {label_counts_train}")
logging.info(f"Label distribution (test): {label_counts_test}")
# Get model
available_models = get_available_models()
if model_name not in available_models:
raise ValueError(
f"Model '{model_name}' not available. Choose from: {list(available_models.keys())}"
)
classifier = available_models[model_name]
clf_name = classifier.__class__.__name__
logging.info(f"Selected classifier: {clf_name}")
# Configuration name
config_name = f"{dataset_name}_{clf_name}_feat{max_features // 1000}k_ngram{ngram_range[0]}-{ngram_range[1]}"
logging.info("=" * 60)
logging.info(f"Training: {config_name}")
logging.info("=" * 60)
# Create TF-IDF pipeline
logging.info(
f"Creating pipeline with max_features={max_features}, ngram_range={ngram_range}"
)
text_clf = Pipeline(
[
(
"vect",
CountVectorizer(max_features=max_features, ngram_range=ngram_range),
),
("tfidf", TfidfTransformer(use_idf=True)),
("clf", classifier),
]
)
# Train the model
logging.info("Training model...")
start_time = time.time()
text_clf.fit(X_train, y_train)
train_time = time.time() - start_time
logging.info(f"Training completed in {train_time:.2f} seconds")
# Evaluate on training set
logging.info("Evaluating on training set...")
train_predictions = text_clf.predict(X_train)
train_accuracy = accuracy_score(y_train, train_predictions)
logging.info(f"Training accuracy: {train_accuracy:.4f}")
# Evaluate on test set
logging.info("Evaluating on test set...")
start_time = time.time()
test_predictions = text_clf.predict(X_test)
test_accuracy = accuracy_score(y_test, test_predictions)
prediction_time = time.time() - start_time
logging.info(f"Test accuracy: {test_accuracy:.4f}")
logging.info(f"Prediction time: {prediction_time:.2f} seconds")
# Classification report
logging.info("Classification Report:")
report = classification_report(y_test, test_predictions, zero_division=0)
logging.info(report)
print("\nClassification Report:")
print(report)
# Save classification report as dict
report_dict = classification_report(
y_test, test_predictions, zero_division=0, output_dict=True
)
# Confusion matrix
cm = confusion_matrix(y_test, test_predictions, labels=unique_labels)
logging.info(f"Confusion Matrix shape: {cm.shape}")
# Save the model
model_path = os.path.join(output_folder, "model.joblib")
joblib.dump(text_clf, model_path)
logging.info(f"Model saved to {model_path}")
print(f"Model saved to {model_path}")
# Save model with config name
config_model_path = os.path.join(output_folder, f"{config_name}.joblib")
joblib.dump(text_clf, config_model_path)
logging.info(f"Model also saved as {config_model_path}")
# Export model if requested
if export_model:
# Use format: <dataset>_sentiment_<timestamp>.joblib
run_id = os.path.basename(run_dir)
dataset_prefix = dataset.lower()
export_filename = f"{dataset_prefix}_sentiment_{run_id}.joblib"
export_path = os.path.join(".", export_filename)
joblib.dump(text_clf, export_path)
logging.info(f"Model exported as {export_path}")
print(f"Model exported for distribution: {export_filename}")
# Save label mapping
label_mapping_path = os.path.join(output_folder, "labels.txt")
with open(label_mapping_path, "w", encoding="utf-8") as f:
for label in unique_labels:
f.write(f"{label}\n")
logging.info(f"Label mapping saved to {label_mapping_path}")
# Save metadata
metadata = {
"timestamp": timestamp,
"dataset": dataset,
"dataset_name": dataset_name,
"config_name": config_name,
"model_name": model_name,
"classifier": clf_name,
"max_features": max_features,
"ngram_range": list(ngram_range),
"split_ratio": split_ratio,
"n_samples": n_samples,
"train_samples": len(X_train),
"test_samples": len(X_test),
"unique_labels": len(unique_labels),
"labels": unique_labels,
"train_accuracy": float(train_accuracy),
"test_accuracy": float(test_accuracy),
"train_time": train_time,
"prediction_time": prediction_time,
"classification_report": report_dict,
"confusion_matrix": cm.tolist(),
}
metadata_path = os.path.join(run_dir, "metadata.json")
with open(metadata_path, "w", encoding="utf-8") as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
logging.info(f"Metadata saved to {metadata_path}")
# Print summary
print("\n" + "=" * 60)
print("Training Summary")
print("=" * 60)
print(f"Model: {clf_name}")
print(f"Training samples: {len(X_train)}")
print(f"Test samples: {len(X_test)}")
print(f"Number of classes: {len(unique_labels)}")
print(f"Training accuracy: {train_accuracy:.4f}")
print(f"Test accuracy: {test_accuracy:.4f}")
print(f"Training time: {train_time:.2f} seconds")
print(f"Model saved to: {model_path}")
print("=" * 60)
return metadata
def train_all_configurations(dataset="vlsp2016", models=None, num_rows=None):
"""Train multiple model configurations and compare results"""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
run_dir = setup_logging(timestamp)
logging.info(f"Starting comparison run: {timestamp}")
logging.info(f"Dataset: {dataset}")
if num_rows:
logging.info(f"Sample limit: {num_rows}")
if models is None:
# Define all available models for comparison
available_models = get_available_models()
models = list(available_models.keys())
logging.info(f"Models to compare: {models}")
# Define configurations to test - focusing on best performing settings
configurations = []
for model_name in models:
if model_name in ["svc_rbf", "gradient_boost", "ada_boost", "mlp"]:
# Use fewer features for computationally expensive models
configurations.append({
"dataset": dataset,
"model_name": model_name,
"max_features": 10000,
"ngram_range": (1, 2),
"n_samples": num_rows
})
else:
# Use more features for faster models
configurations.append({
"dataset": dataset,
"model_name": model_name,
"max_features": 20000,
"ngram_range": (1, 2),
"n_samples": num_rows
})
results = []
for config in configurations:
print(f"\nTraining configuration: {config}")
try:
result = train_model(**config)
results.append(result)
except Exception as e:
logging.error(f"Failed to train with config {config}: {e}")
print(f"Error training configuration: {e}")
# Save comparison results
comparison_path = os.path.join(run_dir, "comparison_results.json")
with open(comparison_path, "w", encoding="utf-8") as f:
json.dump(results, f, indent=2, ensure_ascii=False)
# Print comparison table
print("\n" + "=" * 80)
print("Model Comparison Results")
print("=" * 80)
print(
f"{'Model':<10} {'Features':<10} {'N-gram':<10} {'Train Acc':<12} {'Test Acc':<12}"
)
print("-" * 80)
for result in sorted(results, key=lambda x: x["test_accuracy"], reverse=True):
model = result["classifier"][:8]
features = f"{result['max_features'] // 1000}k"
ngram = f"{result['ngram_range'][0]}-{result['ngram_range'][1]}"
train_acc = result["train_accuracy"]
test_acc = result["test_accuracy"]
print(
f"{model:<10} {features:<10} {ngram:<10} {train_acc:<12.4f} {test_acc:<12.4f}"
)
print("=" * 80)
# Find best model
best_model = max(results, key=lambda x: x["test_accuracy"])
print(f"\nBest model: {best_model['config_name']}")
print(f"Test accuracy: {best_model['test_accuracy']:.4f}")
return results
def train_notebook(dataset="vlsp2016", model_name="logistic", max_features=20000, ngram_min=1, ngram_max=2,
split_ratio=0.2, n_samples=None, compare=False, export_model=False):
"""
Convenience function for training in Jupyter/Colab notebooks without argparse.
Example usage:
from train import train_notebook
train_notebook(dataset="vlsp2016", model_name="logistic", max_features=20000, export_model=True)
"""
if compare:
print(f"Training and comparing multiple configurations on {dataset}...")
return train_all_configurations(dataset=dataset)
else:
print(f"Training {model_name} model on {dataset} dataset...")
print(f"Configuration: max_features={max_features}, ngram=({ngram_min}, {ngram_max})")
return train_model(
dataset=dataset,
model_name=model_name,
max_features=max_features,
ngram_range=(ngram_min, ngram_max),
split_ratio=split_ratio,
n_samples=n_samples,
export_model=export_model,
)
def main():
"""Main function with argument parsing"""
# Detect if running in Jupyter/Colab
import sys
in_notebook = hasattr(sys, 'ps1') or 'ipykernel' in sys.modules or 'google.colab' in sys.modules
parser = argparse.ArgumentParser(
description="Train Vietnamese sentiment classification model on various datasets"
)
parser.add_argument(
"--dataset",
type=str,
choices=["vlsp2016", "uts2017"],
default="vlsp2016",
help="Dataset to use for training (default: vlsp2016)",
)
parser.add_argument(
"--model",
type=str,
choices=["logistic", "svc_linear", "svc_rbf", "naive_bayes", "decision_tree", "random_forest", "gradient_boost", "ada_boost", "mlp"],
default="logistic",
help="Model type to train (default: logistic)",
)
parser.add_argument(
"--max-features",
type=int,
default=20000,
help="Maximum number of features for TF-IDF (default: 20000)",
)
parser.add_argument(
"--ngram-min", type=int, default=1, help="Minimum n-gram range (default: 1)"
)
parser.add_argument(
"--ngram-max", type=int, default=2, help="Maximum n-gram range (default: 2)"
)
parser.add_argument(
"--split-ratio", type=float, default=0.2, help="Test split ratio (default: 0.2)"
)
parser.add_argument(
"--num-rows",
type=int,
default=None,
help="Limit number of rows/samples for quick testing (default: None - use all data)",
)
parser.add_argument(
"--compare",
action="store_true",
help="Train and compare multiple configurations",
)
parser.add_argument(
"--compare-models",
nargs="+",
help="List of specific models to compare (e.g., --compare-models logistic random_forest svc_rbf)",
choices=["logistic", "svc_linear", "svc_rbf", "naive_bayes", "decision_tree", "random_forest", "gradient_boost", "ada_boost", "mlp"]
)
parser.add_argument(
"--export-model",
action="store_true",
help="Export a copy of the trained model to project root for distribution/publishing"
)
# Use parse_known_args to ignore Jupyter/Colab kernel arguments
args, unknown = parser.parse_known_args()
# If running in notebook and there are unknown args, inform user
if in_notebook and unknown:
print(f"Note: Running in Jupyter/Colab environment. Ignoring kernel arguments: {unknown}")
if args.compare or args.compare_models:
if args.compare_models:
print(f"Training and comparing selected models: {args.compare_models}")
print(f"Dataset: {args.dataset}")
if args.num_rows:
print(f"Using {args.num_rows} rows")
train_all_configurations(dataset=args.dataset, models=args.compare_models, num_rows=args.num_rows)
else:
print("Training and comparing all available models...")
print(f"Dataset: {args.dataset}")
if args.num_rows:
print(f"Using {args.num_rows} rows")
train_all_configurations(dataset=args.dataset, num_rows=args.num_rows)
else:
print(f"Training {args.model} model on {args.dataset} dataset...")
print(
f"Configuration: max_features={args.max_features}, ngram=({args.ngram_min}, {args.ngram_max})"
)
train_model(
dataset=args.dataset,
model_name=args.model,
max_features=args.max_features,
ngram_range=(args.ngram_min, args.ngram_max),
split_ratio=args.split_ratio,
n_samples=args.num_rows,
export_model=args.export_model,
)
if __name__ == "__main__":
main() |