vonexel commited on
Commit
482e6a8
·
verified ·
1 Parent(s): 8f82e9c

update: readme

Browse files
Files changed (1) hide show
  1. README.md +4 -4
README.md CHANGED
@@ -3,7 +3,7 @@
3
  <div align="center">
4
  <table>
5
  <tr>
6
- <td><img src="https://github.com/vonexel/smog/blob/master/visuals/smog_logo.png" width="600"></td>
7
  <td><h1>Semantic Motion Generation (SMoG): <br>A PyTorch Implementation</h1></td>
8
  </tr>
9
  </table>
@@ -39,7 +39,7 @@ This implementation:
39
 
40
  ## Results
41
 
42
- ![Generated Motion](https://github.com/vonexel/smog/blob/master/visuals/gen_result.gif)
43
  </div>
44
 
45
 
@@ -101,7 +101,7 @@ The dataset is accompanied by visualization tools and code examples, allowing re
101
  ## 🚶 SMoG Model
102
 
103
 
104
- ![logo](https://github.com/vonexel/smog/blob/master/visuals/smog_diagram.png)
105
 
106
 
107
  **SMoG** is built on MotionCLIP — a 3D motion autoencoder trained to reconstruct poses using natural language. It employs a latent space representing abstract, compressed data features non-trivially present in the input space. Visualizing the latent space reveals points clustered by similarity. This approach reduces reliance on classical data labeling by using contrastive learning to distinguish similarity, identity, or difference between text-motion pairs. During training, action-text pairs are matched for similarity (positive) or dissimilarity (negative), maximizing positive pair similarity and minimizing negative pair similarity.
@@ -138,7 +138,7 @@ During the forward pass, inputs are processed by both branches: the base branch
138
 
139
  | Wings | Swan Lake | Running | Opened the door and walked in | Lift the weights |
140
  |:------------------------------------------------------------------:|:--------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
141
- | <img src="https://github.com/vonexel/smog/blob/master/visuals/gen_0_0.gif"/> | <img src="https://github.com/vonexel/smog/blob/master/visuals/gen_0_3.gif"/> | <img src="https://github.com/vonexel/smog/blob/master/visuals/gen_2_2.gif"/> | <img src="https://github.com/vonexel/smog/blob/master/visuals/gen_4_2.gif"/> | <img src="https://github.com/vonexel/smog/blob/master/visuals/gen_5_2.gif"/> |
142
 
143
 
144
  # Usage
 
3
  <div align="center">
4
  <table>
5
  <tr>
6
+ <td><img src="visuals/smog_logo.png" width="600"></td>
7
  <td><h1>Semantic Motion Generation (SMoG): <br>A PyTorch Implementation</h1></td>
8
  </tr>
9
  </table>
 
39
 
40
  ## Results
41
 
42
+ ![Generated Motion](visuals/gen_result.gif)
43
  </div>
44
 
45
 
 
101
  ## 🚶 SMoG Model
102
 
103
 
104
+ ![logo](visuals/smog_diagram.png)
105
 
106
 
107
  **SMoG** is built on MotionCLIP — a 3D motion autoencoder trained to reconstruct poses using natural language. It employs a latent space representing abstract, compressed data features non-trivially present in the input space. Visualizing the latent space reveals points clustered by similarity. This approach reduces reliance on classical data labeling by using contrastive learning to distinguish similarity, identity, or difference between text-motion pairs. During training, action-text pairs are matched for similarity (positive) or dissimilarity (negative), maximizing positive pair similarity and minimizing negative pair similarity.
 
138
 
139
  | Wings | Swan Lake | Running | Opened the door and walked in | Lift the weights |
140
  |:------------------------------------------------------------------:|:--------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------------------------------------------:|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
141
+ | <img src="visuals/gen_0_0.gif"/> | <img src="visuals/gen_0_3.gif"/> | <img src="visuals/gen_2_2.gif"/> | <img src="visuals/gen_4_2.gif"/> | <img src="visuals/gen_5_2.gif"/> |
142
 
143
 
144
  # Usage