Upload all models and assets for anp (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +190 -156
- models/embeddings/aligned/anp_128d.bin +3 -0
- models/embeddings/aligned/anp_128d.meta.json +1 -0
- models/embeddings/aligned/anp_128d.projection.npy +3 -0
- models/embeddings/aligned/anp_128d_metadata.json +8 -0
- models/embeddings/aligned/anp_32d.bin +3 -0
- models/embeddings/aligned/anp_32d.meta.json +1 -0
- models/embeddings/aligned/anp_32d.projection.npy +3 -0
- models/embeddings/aligned/anp_32d_metadata.json +8 -0
- models/embeddings/aligned/anp_64d.bin +3 -0
- models/embeddings/aligned/anp_64d.meta.json +1 -0
- models/embeddings/aligned/anp_64d.projection.npy +3 -0
- models/embeddings/aligned/anp_64d_metadata.json +8 -0
- models/embeddings/monolingual/anp_128d.bin +2 -2
- models/embeddings/monolingual/anp_128d_metadata.json +1 -1
- models/embeddings/monolingual/anp_32d.bin +2 -2
- models/embeddings/monolingual/anp_32d_metadata.json +1 -1
- models/embeddings/monolingual/anp_64d.bin +2 -2
- models/embeddings/monolingual/anp_64d_metadata.json +1 -1
- models/subword_markov/anp_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/anp_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/anp_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/anp_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/anp_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/anp_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/anp_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/anp_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/anp_2gram_subword.parquet +2 -2
- models/subword_ngram/anp_2gram_subword_metadata.json +2 -2
- models/subword_ngram/anp_3gram_subword.parquet +2 -2
- models/subword_ngram/anp_3gram_subword_metadata.json +2 -2
- models/subword_ngram/anp_4gram_subword.parquet +2 -2
- models/subword_ngram/anp_4gram_subword_metadata.json +2 -2
- models/subword_ngram/anp_5gram_subword.parquet +3 -0
- models/subword_ngram/anp_5gram_subword_metadata.json +7 -0
- models/tokenizer/anp_tokenizer_16k.model +2 -2
- models/tokenizer/anp_tokenizer_16k.vocab +0 -0
- models/tokenizer/anp_tokenizer_32k.model +2 -2
- models/tokenizer/anp_tokenizer_32k.vocab +0 -0
- models/tokenizer/anp_tokenizer_8k.model +2 -2
- models/tokenizer/anp_tokenizer_8k.vocab +0 -0
- models/vocabulary/anp_vocabulary.parquet +2 -2
- models/vocabulary/anp_vocabulary_metadata.json +9 -9
- models/word_markov/anp_markov_ctx1_word.parquet +2 -2
- models/word_markov/anp_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/anp_markov_ctx2_word.parquet +2 -2
- models/word_markov/anp_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/anp_markov_ctx3_word.parquet +2 -2
- models/word_markov/anp_markov_ctx3_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: anp
|
| 3 |
-
language_name:
|
| 4 |
language_family: indoaryan_central
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-indoaryan_central
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 3.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,43 +90,43 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 3.
|
| 86 |
|
| 87 |
### Tokenization Examples
|
| 88 |
|
| 89 |
Below are sample sentences tokenized with each vocabulary size:
|
| 90 |
|
| 91 |
-
**Sample 1:**
|
| 92 |
|
| 93 |
| Vocab | Tokens | Count |
|
| 94 |
|-------|--------|-------|
|
| 95 |
-
| 8k |
|
| 96 |
-
| 16k |
|
| 97 |
-
| 32k |
|
| 98 |
|
| 99 |
-
**Sample 2:**
|
| 100 |
|
| 101 |
| Vocab | Tokens | Count |
|
| 102 |
|-------|--------|-------|
|
| 103 |
-
| 8k |
|
| 104 |
-
| 16k |
|
| 105 |
-
| 32k |
|
| 106 |
|
| 107 |
-
**Sample 3:**
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
-
| 8k |
|
| 112 |
-
| 16k |
|
| 113 |
-
| 32k |
|
| 114 |
|
| 115 |
|
| 116 |
### Key Findings
|
| 117 |
|
| 118 |
-
- **Best Compression:** 32k achieves 3.
|
| 119 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 120 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 121 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 122 |
|
|
@@ -133,12 +143,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 133 |
|
| 134 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 135 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 136 |
-
| **2-gram** | Word | 5,
|
| 137 |
-
| **2-gram** | Subword | 1,
|
| 138 |
-
| **3-gram** | Word | 4,
|
| 139 |
-
| **3-gram** | Subword | 12,
|
| 140 |
-
| **4-gram** | Word | 6,
|
| 141 |
-
| **4-gram** | Subword |
|
|
|
|
|
|
|
| 142 |
|
| 143 |
### Top 5 N-grams by Size
|
| 144 |
|
|
@@ -146,19 +158,19 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 146 |
|
| 147 |
| Rank | N-gram | Count |
|
| 148 |
|------|--------|-------|
|
| 149 |
-
| 1 | `के लिए` |
|
| 150 |
| 2 | `के अनुसार` | 1,711 |
|
| 151 |
-
| 3 | `छै जे` | 1,
|
| 152 |
-
| 4 | `छै जेकरा` | 1,
|
| 153 |
| 5 | `के औसत` | 1,421 |
|
| 154 |
|
| 155 |
**3-grams (Word):**
|
| 156 |
|
| 157 |
| Rank | N-gram | Count |
|
| 158 |
|------|--------|-------|
|
| 159 |
-
| 1 | `छै जेकरा म` | 1,
|
| 160 |
| 2 | `जनगणना के अनुसार` | 1,231 |
|
| 161 |
-
| 3 | `के रूप में` |
|
| 162 |
| 4 | `परिवार रहै छै` | 789 |
|
| 163 |
| 5 | `म स्थित ऐगो` | 690 |
|
| 164 |
|
|
@@ -172,42 +184,62 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 172 |
| 4 | `के जनगणना के अनुसार` | 498 |
|
| 173 |
| 5 | `गाँव छै जेकरा म` | 479 |
|
| 174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
**2-grams (Subword):**
|
| 176 |
|
| 177 |
| Rank | N-gram | Count |
|
| 178 |
|------|--------|-------|
|
| 179 |
-
| 1 | `र _` | 44,
|
| 180 |
-
| 2 | `_ के` |
|
| 181 |
-
| 3 | `के _` | 39,
|
| 182 |
-
| 4 | `, _` | 27,
|
| 183 |
-
| 5 | `। _` | 27,
|
| 184 |
|
| 185 |
**3-grams (Subword):**
|
| 186 |
|
| 187 |
| Rank | N-gram | Count |
|
| 188 |
|------|--------|-------|
|
| 189 |
-
| 1 | `_ के _` | 37,
|
| 190 |
-
| 2 | `_ में _` | 14,
|
| 191 |
-
| 3 | `_ की _` | 9,
|
| 192 |
-
| 4 | `_ औ र` | 9,
|
| 193 |
-
| 5 | `औ र _` | 9,
|
| 194 |
|
| 195 |
**4-grams (Subword):**
|
| 196 |
|
| 197 |
| Rank | N-gram | Count |
|
| 198 |
|------|--------|-------|
|
| 199 |
-
| 1 | `_ औ र _` | 9,
|
| 200 |
-
| 2 | `_ है । _` | 6,
|
| 201 |
-
| 3 | `_ छै । _` |
|
| 202 |
-
| 4 | `_ ए क _` | 4,
|
| 203 |
-
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
|
| 206 |
### Key Findings
|
| 207 |
|
| 208 |
-
- **Best Perplexity:** 2-gram (subword) with 1,
|
| 209 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 210 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 211 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 212 |
|
| 213 |
---
|
|
@@ -223,14 +255,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 223 |
|
| 224 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 225 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 226 |
-
| **1** | Word | 0.
|
| 227 |
-
| **1** | Subword | 0.
|
| 228 |
-
| **2** | Word | 0.
|
| 229 |
-
| **2** | Subword | 0.
|
| 230 |
-
| **3** | Word | 0.
|
| 231 |
-
| **3** | Subword | 0.
|
| 232 |
-
| **4** | Word | 0.
|
| 233 |
-
| **4** | Subword | 0.
|
| 234 |
|
| 235 |
### Generated Text Samples (Word-based)
|
| 236 |
|
|
@@ -238,27 +270,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 238 |
|
| 239 |
**Context Size 1:**
|
| 240 |
|
| 241 |
-
1. `के
|
| 242 |
-
2. `में
|
| 243 |
-
3.
|
| 244 |
|
| 245 |
**Context Size 2:**
|
| 246 |
|
| 247 |
-
1. `के लिए
|
| 248 |
-
2. `के अनुसार
|
| 249 |
-
3. `छै जे
|
| 250 |
|
| 251 |
**Context Size 3:**
|
| 252 |
|
| 253 |
-
1. `छै जेकरा म कुल
|
| 254 |
-
2. `जनगणना के अनुसार
|
| 255 |
-
3. `के रूप में
|
| 256 |
|
| 257 |
**Context Size 4:**
|
| 258 |
|
| 259 |
-
1. `छै जेकरा म कुल
|
| 260 |
-
2. `के औसत लिंग अनुपात 782 छै जे बिहार राज्य के औसत 918 स कम छै जनगणना के अनुसार
|
| 261 |
-
3. `छै जनगणना के अनुसार
|
| 262 |
|
| 263 |
|
| 264 |
### Generated Text Samples (Subword-based)
|
|
@@ -267,34 +299,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 267 |
|
| 268 |
**Context Size 1:**
|
| 269 |
|
| 270 |
-
1. `_
|
| 271 |
-
2.
|
| 272 |
-
3.
|
| 273 |
|
| 274 |
**Context Size 2:**
|
| 275 |
|
| 276 |
-
1. `र_
|
| 277 |
-
2. `_के_
|
| 278 |
-
3. `के_
|
| 279 |
|
| 280 |
**Context Size 3:**
|
| 281 |
|
| 282 |
-
1. `_के_
|
| 283 |
-
2. `_में_
|
| 284 |
-
3. `_की_
|
| 285 |
|
| 286 |
**Context Size 4:**
|
| 287 |
|
| 288 |
-
1. `_और_
|
| 289 |
-
2. `_है।_
|
| 290 |
-
3. `_छै।_
|
| 291 |
|
| 292 |
|
| 293 |
### Key Findings
|
| 294 |
|
| 295 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 296 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 297 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 298 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 299 |
|
| 300 |
---
|
|
@@ -310,64 +342,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 310 |
|
| 311 |
| Metric | Value |
|
| 312 |
|--------|-------|
|
| 313 |
-
| Vocabulary Size |
|
| 314 |
-
| Total Tokens |
|
| 315 |
-
| Mean Frequency |
|
| 316 |
| Median Frequency | 4 |
|
| 317 |
-
| Frequency Std Dev |
|
| 318 |
|
| 319 |
### Most Common Words
|
| 320 |
|
| 321 |
| Rank | Word | Frequency |
|
| 322 |
|------|------|-----------|
|
| 323 |
-
| 1 | के | 37,
|
| 324 |
-
| 2 | में |
|
| 325 |
-
| 3 | छै |
|
| 326 |
-
| 4 | है | 12,
|
| 327 |
-
| 5 | की | 9,
|
| 328 |
-
| 6 | और | 9,
|
| 329 |
-
| 7 | का | 7,
|
| 330 |
-
| 8 | से | 7,
|
| 331 |
-
| 9 | को | 5,
|
| 332 |
-
| 10 | हैं | 5,
|
| 333 |
|
| 334 |
### Least Common Words (from vocabulary)
|
| 335 |
|
| 336 |
| Rank | Word | Frequency |
|
| 337 |
|------|------|-----------|
|
| 338 |
-
| 1 |
|
| 339 |
-
| 2 |
|
| 340 |
-
| 3 |
|
| 341 |
-
| 4 |
|
| 342 |
-
| 5 |
|
| 343 |
-
| 6 |
|
| 344 |
-
| 7 |
|
| 345 |
-
| 8 |
|
| 346 |
-
| 9 |
|
| 347 |
-
| 10 |
|
| 348 |
|
| 349 |
### Zipf's Law Analysis
|
| 350 |
|
| 351 |
| Metric | Value |
|
| 352 |
|--------|-------|
|
| 353 |
-
| Zipf Coefficient | 1.
|
| 354 |
-
| R² (Goodness of Fit) | 0.
|
| 355 |
| Adherence Quality | **excellent** |
|
| 356 |
|
| 357 |
### Coverage Analysis
|
| 358 |
|
| 359 |
| Top N Words | Coverage |
|
| 360 |
|-------------|----------|
|
| 361 |
-
| Top 100 |
|
| 362 |
-
| Top 1,000 | 69.
|
| 363 |
-
| Top 5,000 |
|
| 364 |
-
| Top 10,000 |
|
| 365 |
|
| 366 |
### Key Findings
|
| 367 |
|
| 368 |
-
- **Zipf Compliance:** R²=0.
|
| 369 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 370 |
-
- **Long Tail:**
|
| 371 |
|
| 372 |
---
|
| 373 |
## 5. Word Embeddings Evaluation
|
|
@@ -383,37 +415,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 383 |
|
| 384 |
### 5.1 Cross-Lingual Alignment
|
| 385 |
|
| 386 |
-
|
|
|
|
|
|
|
| 387 |
|
| 388 |
|
| 389 |
### 5.2 Model Comparison
|
| 390 |
|
| 391 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 392 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 393 |
-
| **mono_32d** | 32 | 0.
|
| 394 |
-
| **mono_64d** | 64 | 0.
|
| 395 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 396 |
|
| 397 |
### Key Findings
|
| 398 |
|
| 399 |
-
- **Best Isotropy:** mono_32d with 0.
|
| 400 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 401 |
-
- **Alignment Quality:**
|
| 402 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 403 |
|
| 404 |
---
|
| 405 |
## 6. Morphological Analysis (Experimental)
|
| 406 |
|
| 407 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 408 |
-
|
| 409 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 410 |
|
| 411 |
### 6.1 Productivity & Complexity
|
| 412 |
|
| 413 |
| Metric | Value | Interpretation | Recommendation |
|
| 414 |
|--------|-------|----------------|----------------|
|
| 415 |
-
| Productivity Index | **
|
| 416 |
-
| Idiomaticity Gap |
|
| 417 |
|
| 418 |
### 6.2 Affix Inventory (Productive Units)
|
| 419 |
|
|
@@ -422,13 +457,11 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 422 |
#### Productive Prefixes
|
| 423 |
| Prefix | Examples |
|
| 424 |
|--------|----------|
|
| 425 |
-
| `-प्` | प्रिंत्सीप, प्रतिअंकन, प्रभाग |
|
| 426 |
-
| `-प्र` | प्रिंत्सीप, प्रतिअंकन, प्रभाग |
|
| 427 |
|
| 428 |
#### Productive Suffixes
|
| 429 |
| Suffix | Examples |
|
| 430 |
|--------|----------|
|
| 431 |
-
| `-ों` |
|
| 432 |
|
| 433 |
### 6.3 Bound Stems (Lexical Roots)
|
| 434 |
|
|
@@ -436,17 +469,16 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 436 |
|
| 437 |
| Stem | Cohesion | Substitutability | Examples |
|
| 438 |
|------|----------|------------------|----------|
|
| 439 |
-
| `tion` | 2.
|
| 440 |
-
| `atio` | 2.
|
| 441 |
-
| `stat` | 2.
|
| 442 |
|
| 443 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 444 |
|
| 445 |
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 446 |
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
| `-प्` | `-ों` | 20 words | प्रयासों, प्रकृतिवादियों |
|
| 450 |
|
| 451 |
### 6.5 Recursive Morpheme Segmentation
|
| 452 |
|
|
@@ -454,26 +486,28 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 454 |
|
| 455 |
| Word | Suggested Split | Confidence | Stem |
|
| 456 |
|------|-----------------|------------|------|
|
| 457 |
-
|
|
| 458 |
-
|
|
| 459 |
-
|
|
| 460 |
-
|
|
| 461 |
-
|
|
| 462 |
-
|
|
| 463 |
-
|
|
| 464 |
-
|
|
| 465 |
-
|
|
| 466 |
-
|
|
| 467 |
-
|
|
| 468 |
-
|
|
| 469 |
-
|
|
| 470 |
-
|
|
| 471 |
-
|
|
| 472 |
|
| 473 |
### 6.6 Linguistic Interpretation
|
| 474 |
|
| 475 |
> **Automated Insight:**
|
| 476 |
-
The language
|
|
|
|
|
|
|
| 477 |
|
| 478 |
---
|
| 479 |
## 7. Summary & Recommendations
|
|
@@ -485,7 +519,7 @@ The language ANP appears to be more isolating or has a highly fixed vocabulary.
|
|
| 485 |
| Component | Recommended | Rationale |
|
| 486 |
|-----------|-------------|-----------|
|
| 487 |
| Tokenizer | **32k BPE** | Best compression (3.78x) |
|
| 488 |
-
| N-gram | **2-gram** | Lowest perplexity (1,
|
| 489 |
| Markov | **Context-4** | Highest predictability (97.9%) |
|
| 490 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 491 |
|
|
@@ -700,4 +734,4 @@ MIT License - Free for academic and commercial use.
|
|
| 700 |
---
|
| 701 |
*Generated by Wikilangs Models Pipeline*
|
| 702 |
|
| 703 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: anp
|
| 3 |
+
language_name: Angika
|
| 4 |
language_family: indoaryan_central
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-indoaryan_central
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 3.777
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8282
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Angika - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Angika** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.298x | 3.30 | 0.1077% | 449,296 |
|
| 94 |
+
| **16k** | 3.575x | 3.58 | 0.1168% | 414,503 |
|
| 95 |
+
| **32k** | 3.777x 🏆 | 3.78 | 0.1234% | 392,298 |
|
| 96 |
|
| 97 |
### Tokenization Examples
|
| 98 |
|
| 99 |
Below are sample sentences tokenized with each vocabulary size:
|
| 100 |
|
| 101 |
+
**Sample 1:** `ई लेख खाली रंगौ के सूची लेख केरौ सूची क अँग्रेजी़ वर्णक्रम मँ रखै लेली बनलौ छै। ...`
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁ई ▁लेख ▁खाली ▁रंग ौ ▁के ▁सूची ▁लेख ▁केरौ ▁सूची ... (+15 more)` | 25 |
|
| 106 |
+
| 16k | `▁ई ▁लेख ▁खाली ▁रंग ौ ▁के ▁सूची ▁लेख ▁केरौ ▁सूची ... (+13 more)` | 23 |
|
| 107 |
+
| 32k | `▁ई ▁लेख ▁खाली ▁रंगौ ▁के ▁सूची ▁लेख ▁केरौ ▁सूची ▁क ... (+9 more)` | 19 |
|
| 108 |
|
| 109 |
+
**Sample 2:** `तत्व उ छीकै जेकरा भौतिक व रासियनिक विधि द्वारा तोड़लो नय जाबे सकै छै। तत्त्व (जै...`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
+
| 8k | `▁तत्व ▁उ ▁छीकै ▁जेकरा ▁भौतिक ▁व ▁रा स िय निक ... (+30 more)` | 40 |
|
| 114 |
+
| 16k | `▁तत्व ▁उ ▁छीकै ▁जेकरा ▁भौतिक ▁व ▁रास िय निक ▁विधि ... (+27 more)` | 37 |
|
| 115 |
+
| 32k | `▁तत्व ▁उ ▁छीकै ▁जेकरा ▁भौतिक ▁व ▁रासियनिक ▁विधि ▁द्वारा ▁तोड़लो ... (+22 more)` | 32 |
|
| 116 |
|
| 117 |
+
**Sample 3:** `मई ग्रेगोरी कैलंडर क 5मां महीना छेकै। इ उ सात महीना मँ सँ एक छेकै जेकरौ दिन सिनी...`
|
| 118 |
|
| 119 |
| Vocab | Tokens | Count |
|
| 120 |
|-------|--------|-------|
|
| 121 |
+
| 8k | `▁मई ▁ग्रेगोरी ▁कैलंडर ▁क ▁ 5 मां ▁महीना ▁छेकै । ... (+24 more)` | 34 |
|
| 122 |
+
| 16k | `▁मई ▁ग्रेगोरी ▁कैलंडर ▁क ▁ 5 मां ▁महीना ▁छेकै । ... (+24 more)` | 34 |
|
| 123 |
+
| 32k | `▁मई ▁ग्रेगोरी ▁कैलंडर ▁क ▁ 5 मां ▁महीना ▁छेकै । ... (+24 more)` | 34 |
|
| 124 |
|
| 125 |
|
| 126 |
### Key Findings
|
| 127 |
|
| 128 |
+
- **Best Compression:** 32k achieves 3.777x compression
|
| 129 |
+
- **Lowest UNK Rate:** 8k with 0.1077% unknown tokens
|
| 130 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 131 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 132 |
|
|
|
|
| 143 |
|
| 144 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 145 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 146 |
+
| **2-gram** | Word | 5,133 | 12.33 | 15,401 | 20.6% | 52.0% |
|
| 147 |
+
| **2-gram** | Subword | 1,763 🏆 | 10.78 | 18,130 | 37.8% | 73.7% |
|
| 148 |
+
| **3-gram** | Word | 4,136 | 12.01 | 14,976 | 21.1% | 59.7% |
|
| 149 |
+
| **3-gram** | Subword | 12,510 | 13.61 | 74,071 | 14.6% | 40.2% |
|
| 150 |
+
| **4-gram** | Word | 6,638 | 12.70 | 28,729 | 18.3% | 55.5% |
|
| 151 |
+
| **4-gram** | Subword | 43,295 | 15.40 | 212,245 | 8.3% | 26.6% |
|
| 152 |
+
| **5-gram** | Word | 4,565 | 12.16 | 20,947 | 20.4% | 62.1% |
|
| 153 |
+
| **5-gram** | Subword | 74,529 | 16.19 | 271,380 | 5.9% | 20.8% |
|
| 154 |
|
| 155 |
### Top 5 N-grams by Size
|
| 156 |
|
|
|
|
| 158 |
|
| 159 |
| Rank | N-gram | Count |
|
| 160 |
|------|--------|-------|
|
| 161 |
+
| 1 | `के लिए` | 1,987 |
|
| 162 |
| 2 | `के अनुसार` | 1,711 |
|
| 163 |
+
| 3 | `छै जे` | 1,664 |
|
| 164 |
+
| 4 | `छै जेकरा` | 1,521 |
|
| 165 |
| 5 | `के औसत` | 1,421 |
|
| 166 |
|
| 167 |
**3-grams (Word):**
|
| 168 |
|
| 169 |
| Rank | N-gram | Count |
|
| 170 |
|------|--------|-------|
|
| 171 |
+
| 1 | `छै जेकरा म` | 1,240 |
|
| 172 |
| 2 | `जनगणना के अनुसार` | 1,231 |
|
| 173 |
+
| 3 | `के रूप में` | 796 |
|
| 174 |
| 4 | `परिवार रहै छै` | 789 |
|
| 175 |
| 5 | `म स्थित ऐगो` | 690 |
|
| 176 |
|
|
|
|
| 184 |
| 4 | `के जनगणना के अनुसार` | 498 |
|
| 185 |
| 5 | `गाँव छै जेकरा म` | 479 |
|
| 186 |
|
| 187 |
+
**5-grams (Word):**
|
| 188 |
+
|
| 189 |
+
| Rank | N-gram | Count |
|
| 190 |
+
|------|--------|-------|
|
| 191 |
+
| 1 | `गाँव छै जेकरा म कुल` | 476 |
|
| 192 |
+
| 2 | `छै के जनगणना के अनुसार` | 438 |
|
| 193 |
+
| 3 | `0 6 आयु वर्ग के` | 436 |
|
| 194 |
+
| 4 | `6 आयु वर्ग के बच्चा` | 435 |
|
| 195 |
+
| 5 | `आयु वर्ग के बच्चा के` | 432 |
|
| 196 |
+
|
| 197 |
**2-grams (Subword):**
|
| 198 |
|
| 199 |
| Rank | N-gram | Count |
|
| 200 |
|------|--------|-------|
|
| 201 |
+
| 1 | `र _` | 44,141 |
|
| 202 |
+
| 2 | `_ के` | 43,544 |
|
| 203 |
+
| 3 | `के _` | 39,889 |
|
| 204 |
+
| 4 | `, _` | 27,806 |
|
| 205 |
+
| 5 | `। _` | 27,568 |
|
| 206 |
|
| 207 |
**3-grams (Subword):**
|
| 208 |
|
| 209 |
| Rank | N-gram | Count |
|
| 210 |
|------|--------|-------|
|
| 211 |
+
| 1 | `_ के _` | 37,379 |
|
| 212 |
+
| 2 | `_ में _` | 14,100 |
|
| 213 |
+
| 3 | `_ की _` | 9,283 |
|
| 214 |
+
| 4 | `_ औ र` | 9,137 |
|
| 215 |
+
| 5 | `औ र _` | 9,133 |
|
| 216 |
|
| 217 |
**4-grams (Subword):**
|
| 218 |
|
| 219 |
| Rank | N-gram | Count |
|
| 220 |
|------|--------|-------|
|
| 221 |
+
| 1 | `_ औ र _` | 9,104 |
|
| 222 |
+
| 2 | `_ है । _` | 6,415 |
|
| 223 |
+
| 3 | `_ छै । _` | 6,096 |
|
| 224 |
+
| 4 | `_ ए क _` | 4,687 |
|
| 225 |
+
| 5 | `_ छै , _` | 3,618 |
|
| 226 |
+
|
| 227 |
+
**5-grams (Subword):**
|
| 228 |
+
|
| 229 |
+
| Rank | N-gram | Count |
|
| 230 |
+
|------|--------|-------|
|
| 231 |
+
| 1 | `_ छै , _ जे` | 2,233 |
|
| 232 |
+
| 2 | `_ भा र त _` | 2,072 |
|
| 233 |
+
| 3 | `ता _ है । _` | 2,029 |
|
| 234 |
+
| 4 | `_ अ नु सा र` | 2,019 |
|
| 235 |
+
| 5 | `_ के _ लि ए` | 1,986 |
|
| 236 |
|
| 237 |
|
| 238 |
### Key Findings
|
| 239 |
|
| 240 |
+
- **Best Perplexity:** 2-gram (subword) with 1,763
|
| 241 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 242 |
+
- **Coverage:** Top-1000 patterns cover ~21% of corpus
|
| 243 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 244 |
|
| 245 |
---
|
|
|
|
| 255 |
|
| 256 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 257 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 258 |
+
| **1** | Word | 0.8698 | 1.827 | 5.82 | 59,321 | 13.0% |
|
| 259 |
+
| **1** | Subword | 0.9730 | 1.963 | 11.48 | 4,665 | 2.7% |
|
| 260 |
+
| **2** | Word | 0.2523 | 1.191 | 1.56 | 344,866 | 74.8% |
|
| 261 |
+
| **2** | Subword | 0.5491 | 1.463 | 3.85 | 53,547 | 45.1% |
|
| 262 |
+
| **3** | Word | 0.0707 | 1.050 | 1.12 | 537,872 | 92.9% |
|
| 263 |
+
| **3** | Subword | 0.4976 | 1.412 | 2.68 | 206,241 | 50.2% |
|
| 264 |
+
| **4** | Word | 0.0212 🏆 | 1.015 | 1.03 | 599,865 | 97.9% |
|
| 265 |
+
| **4** | Subword | 0.3012 | 1.232 | 1.72 | 551,827 | 69.9% |
|
| 266 |
|
| 267 |
### Generated Text Samples (Word-based)
|
| 268 |
|
|
|
|
| 270 |
|
| 271 |
**Context Size 1:**
|
| 272 |
|
| 273 |
+
1. `के सूची लेख न्यूयॉर्क 5 7 8 839 परिवार रहै के छेलै आरू सॉफ्ट लैंडिंग का`
|
| 274 |
+
2. `में बर्फ़ के कुछ स्थानों पर दृष्टिपात करें पुणे शहर में आविष्कृत इक्वेटोरियम और दक्षिण जॉर्जिया`
|
| 275 |
+
3. `छै जे अध्यक्ष बनान के बाल लिंग अनुपात 750 पुरुष आरु महिला छै जे संस्कृत अभिलेख`
|
| 276 |
|
| 277 |
**Context Size 2:**
|
| 278 |
|
| 279 |
+
1. `के लिए उपलब्ध हैं यह या तो एक दूसरे के बाद वू गुमला वर्तमान झारखंड मँ धर्म`
|
| 280 |
+
2. `के अनुसार उचगांव गांव के कुल आबादी के 4 76 छै रघरिया गाँव के औसत लिंग अनुपात`
|
| 281 |
+
3. `छै जे कुल जनसंख्या के 17 98 छै जे मुख्य भूमि के लिए विला के शिखर का`
|
| 282 |
|
| 283 |
**Context Size 3:**
|
| 284 |
|
| 285 |
+
1. `छै जेकरा म कुल 122 परिवार रहै छै जनगणना के अनुसार सरही गांव के आबादी 182 छेलै जेकरा`
|
| 286 |
+
2. `जनगणना के अनुसार दिघी के बाल लिंग अनुपात 695 छै जे बिहार राज्य के औसत 918 स कम`
|
| 287 |
+
3. `के रूप में लाल सेना का नेतृत्व किया और बर्मिंघम अलबामा में के कुछ अहिंसक विरोधों को आयोजित`
|
| 288 |
|
| 289 |
**Context Size 4:**
|
| 290 |
|
| 291 |
+
1. `छै जेकरा म कुल 64 परिवार रहै छै के जनगणना के अनुसार बरियारपुर के बाल लिंग अनुपात छै जे`
|
| 292 |
+
2. `के औसत लिंग अनुपात 782 छै जे बिहार राज्य के औसत 918 स कम छै जनगणना के अनुसार टकटौली`
|
| 293 |
+
3. `छै जनगणना के अनुसार अमलगरिया गाँव के जनसंख्या 91 छै जेकरा म स 1 939 पुरुष आरू 1 705`
|
| 294 |
|
| 295 |
|
| 296 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 299 |
|
| 300 |
**Context Size 1:**
|
| 301 |
|
| 302 |
+
1. `_बादनसांख्यिकी_प्रभारत_देसदी`
|
| 303 |
+
2. `रख_"_के_इति_बाल_कम्पनी`
|
| 304 |
+
3. `करशान_जन_से_जुड़कर_वि`
|
| 305 |
|
| 306 |
**Context Size 2:**
|
| 307 |
|
| 308 |
+
1. `र_अपने_थे।वास्को_आड़े_और_`
|
| 309 |
+
2. `_के_लिए_रहै_कित_दृष्टि)_के`
|
| 310 |
+
3. `के_प्रारम्भिक_है_के_सार_चमत्का`
|
| 311 |
|
| 312 |
**Context Size 3:**
|
| 313 |
|
| 314 |
+
1. `_के_उच्च_पदार्थों_सँ_जुड़ली_गेले`
|
| 315 |
+
2. `_में_तारे_गये_शिवनेरी_किये_जा`
|
| 316 |
+
3. `_की_क्रियाक_सफल_करी_देलोगेल`
|
| 317 |
|
| 318 |
**Context Size 4:**
|
| 319 |
|
| 320 |
+
1. `_और_अंतरिक्ष_में_था।_इसके_म`
|
| 321 |
+
2. `_है।_यह_फिल्म_अभिनेता_से_इन्हों`
|
| 322 |
+
3. `_छै।_नाभिकीय_शक्ति_का_रूप_मँ_`
|
| 323 |
|
| 324 |
|
| 325 |
### Key Findings
|
| 326 |
|
| 327 |
- **Best Predictability:** Context-4 (word) with 97.9% predictability
|
| 328 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 329 |
+
- **Memory Trade-off:** Larger contexts require more storage (551,827 contexts)
|
| 330 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 331 |
|
| 332 |
---
|
|
|
|
| 342 |
|
| 343 |
| Metric | Value |
|
| 344 |
|--------|-------|
|
| 345 |
+
| Vocabulary Size | 27,495 |
|
| 346 |
+
| Total Tokens | 705,736 |
|
| 347 |
+
| Mean Frequency | 25.67 |
|
| 348 |
| Median Frequency | 4 |
|
| 349 |
+
| Frequency Std Dev | 313.78 |
|
| 350 |
|
| 351 |
### Most Common Words
|
| 352 |
|
| 353 |
| Rank | Word | Frequency |
|
| 354 |
|------|------|-----------|
|
| 355 |
+
| 1 | के | 37,476 |
|
| 356 |
+
| 2 | में | 14,866 |
|
| 357 |
+
| 3 | छै | 13,486 |
|
| 358 |
+
| 4 | है | 12,172 |
|
| 359 |
+
| 5 | की | 9,675 |
|
| 360 |
+
| 6 | और | 9,147 |
|
| 361 |
+
| 7 | का | 7,600 |
|
| 362 |
+
| 8 | से | 7,248 |
|
| 363 |
+
| 9 | को | 5,485 |
|
| 364 |
+
| 10 | हैं | 5,201 |
|
| 365 |
|
| 366 |
### Least Common Words (from vocabulary)
|
| 367 |
|
| 368 |
| Rank | Word | Frequency |
|
| 369 |
|------|------|-----------|
|
| 370 |
+
| 1 | zeros | 2 |
|
| 371 |
+
| 2 | ignored | 2 |
|
| 372 |
+
| 3 | dmy | 2 |
|
| 373 |
+
| 4 | mdy | 2 |
|
| 374 |
+
| 5 | paren | 2 |
|
| 375 |
+
| 6 | breaking | 2 |
|
| 376 |
+
| 7 | inserted | 2 |
|
| 377 |
+
| 8 | values | 2 |
|
| 378 |
+
| 9 | separator | 2 |
|
| 379 |
+
| 10 | days | 2 |
|
| 380 |
|
| 381 |
### Zipf's Law Analysis
|
| 382 |
|
| 383 |
| Metric | Value |
|
| 384 |
|--------|-------|
|
| 385 |
+
| Zipf Coefficient | 1.1206 |
|
| 386 |
+
| R² (Goodness of Fit) | 0.994934 |
|
| 387 |
| Adherence Quality | **excellent** |
|
| 388 |
|
| 389 |
### Coverage Analysis
|
| 390 |
|
| 391 |
| Top N Words | Coverage |
|
| 392 |
|-------------|----------|
|
| 393 |
+
| Top 100 | 39.9% |
|
| 394 |
+
| Top 1,000 | 69.2% |
|
| 395 |
+
| Top 5,000 | 86.8% |
|
| 396 |
+
| Top 10,000 | 92.8% |
|
| 397 |
|
| 398 |
### Key Findings
|
| 399 |
|
| 400 |
+
- **Zipf Compliance:** R²=0.9949 indicates excellent adherence to Zipf's law
|
| 401 |
+
- **High Frequency Dominance:** Top 100 words cover 39.9% of corpus
|
| 402 |
+
- **Long Tail:** 17,495 words needed for remaining 7.2% coverage
|
| 403 |
|
| 404 |
---
|
| 405 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 415 |
|
| 416 |
### 5.1 Cross-Lingual Alignment
|
| 417 |
|
| 418 |
+

|
| 419 |
+
|
| 420 |
+

|
| 421 |
|
| 422 |
|
| 423 |
### 5.2 Model Comparison
|
| 424 |
|
| 425 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 426 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 427 |
+
| **mono_32d** | 32 | 0.8282 🏆 | 0.3565 | N/A | N/A |
|
| 428 |
+
| **mono_64d** | 64 | 0.7038 | 0.2985 | N/A | N/A |
|
| 429 |
+
| **mono_128d** | 128 | 0.3364 | 0.2651 | N/A | N/A |
|
| 430 |
+
| **aligned_32d** | 32 | 0.8282 | 0.3484 | 0.0140 | 0.1160 |
|
| 431 |
+
| **aligned_64d** | 64 | 0.7038 | 0.2963 | 0.0320 | 0.1400 |
|
| 432 |
+
| **aligned_128d** | 128 | 0.3364 | 0.2724 | 0.0320 | 0.1640 |
|
| 433 |
|
| 434 |
### Key Findings
|
| 435 |
|
| 436 |
+
- **Best Isotropy:** mono_32d with 0.8282 (more uniform distribution)
|
| 437 |
+
- **Semantic Density:** Average pairwise similarity of 0.3062. Lower values indicate better semantic separation.
|
| 438 |
+
- **Alignment Quality:** Aligned models achieve up to 3.2% R@1 in cross-lingual retrieval.
|
| 439 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 440 |
|
| 441 |
---
|
| 442 |
## 6. Morphological Analysis (Experimental)
|
| 443 |
|
|
|
|
|
|
|
| 444 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 445 |
|
| 446 |
### 6.1 Productivity & Complexity
|
| 447 |
|
| 448 |
| Metric | Value | Interpretation | Recommendation |
|
| 449 |
|--------|-------|----------------|----------------|
|
| 450 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 451 |
+
| Idiomaticity Gap | **1.980** | High formulaic/idiomatic content | - |
|
| 452 |
|
| 453 |
### 6.2 Affix Inventory (Productive Units)
|
| 454 |
|
|
|
|
| 457 |
#### Productive Prefixes
|
| 458 |
| Prefix | Examples |
|
| 459 |
|--------|----------|
|
|
|
|
|
|
|
| 460 |
|
| 461 |
#### Productive Suffixes
|
| 462 |
| Suffix | Examples |
|
| 463 |
|--------|----------|
|
| 464 |
+
| `-ों` | कबीलों, राजकुमारियों, खातों |
|
| 465 |
|
| 466 |
### 6.3 Bound Stems (Lexical Roots)
|
| 467 |
|
|
|
|
| 469 |
|
| 470 |
| Stem | Cohesion | Substitutability | Examples |
|
| 471 |
|------|----------|------------------|----------|
|
| 472 |
+
| `tion` | 2.62x | 15 contexts | motion, action, nations |
|
| 473 |
+
| `atio` | 2.64x | 12 contexts | nations, station, equation |
|
| 474 |
+
| `stat` | 2.66x | 6 contexts | state, states, statea |
|
| 475 |
|
| 476 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 477 |
|
| 478 |
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 479 |
|
| 480 |
+
*No significant affix co-occurrences detected.*
|
| 481 |
+
|
|
|
|
| 482 |
|
| 483 |
### 6.5 Recursive Morpheme Segmentation
|
| 484 |
|
|
|
|
| 486 |
|
| 487 |
| Word | Suggested Split | Confidence | Stem |
|
| 488 |
|------|-----------------|------------|------|
|
| 489 |
+
| महाविद्यालयों | **`महाविद्यालय-ों`** | 4.5 | `महाविद्यालय` |
|
| 490 |
+
| प्रबंधकों | **`प्रबंधक-ों`** | 4.5 | `प्रबंधक` |
|
| 491 |
+
| चमत्कारों | **`चमत्कार-ों`** | 4.5 | `चमत्कार` |
|
| 492 |
+
| विद्वानों | **`विद्वान-ों`** | 4.5 | `विद्वान` |
|
| 493 |
+
| व्याख्यानों | **`व्याख्यान-ों`** | 4.5 | `व्याख्यान` |
|
| 494 |
+
| कार्टूनों | **`कार्टून-ों`** | 4.5 | `कार्टून` |
|
| 495 |
+
| शास्त्रों | **`श���स्त्र-ों`** | 4.5 | `शास्त्र` |
|
| 496 |
+
| कंप्यूटरों | **`कंप्यूटर-ों`** | 4.5 | `कंप्यूटर` |
|
| 497 |
+
| संस्कारों | **`संस्कार-ों`** | 4.5 | `संस्कार` |
|
| 498 |
+
| महासागरों | **`महासागर-ों`** | 4.5 | `महासागर` |
|
| 499 |
+
| पाठ्यक्रमों | **`पाठ्यक्रम-ों`** | 4.5 | `पाठ्यक्रम` |
|
| 500 |
+
| मुसलमानों | **`मुसलमान-ों`** | 4.5 | `मुसलमान` |
|
| 501 |
+
| महाद्वारों | **`महाद्वार-ों`** | 4.5 | `महाद्वार` |
|
| 502 |
+
| चालुक्यों | **`चालुक्य-ों`** | 4.5 | `चालुक्य` |
|
| 503 |
+
| प्रकाशकों | **`प्रकाशक-ों`** | 4.5 | `प्रकाशक` |
|
| 504 |
|
| 505 |
### 6.6 Linguistic Interpretation
|
| 506 |
|
| 507 |
> **Automated Insight:**
|
| 508 |
+
The language Angika shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 509 |
+
|
| 510 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 511 |
|
| 512 |
---
|
| 513 |
## 7. Summary & Recommendations
|
|
|
|
| 519 |
| Component | Recommended | Rationale |
|
| 520 |
|-----------|-------------|-----------|
|
| 521 |
| Tokenizer | **32k BPE** | Best compression (3.78x) |
|
| 522 |
+
| N-gram | **2-gram** | Lowest perplexity (1,763) |
|
| 523 |
| Markov | **Context-4** | Highest predictability (97.9%) |
|
| 524 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 525 |
|
|
|
|
| 734 |
---
|
| 735 |
*Generated by Wikilangs Models Pipeline*
|
| 736 |
|
| 737 |
+
*Report Date: 2026-01-03 14:14:54*
|
models/embeddings/aligned/anp_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7af5575e958475f78e2345f53a960547b317d08c4f564f1e287dc68e616de125
|
| 3 |
+
size 1036402426
|
models/embeddings/aligned/anp_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "anp", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/anp_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:211dd9cb35d6746640872c76eb78c86fe575a4d701ef5cf510e8d23359171c14
|
| 3 |
+
size 65664
|
models/embeddings/aligned/anp_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "anp",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1254,
|
| 7 |
+
"vocab_size": 11815
|
| 8 |
+
}
|
models/embeddings/aligned/anp_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62587f7000693b582c9132fe07d435b228ee6af1d47b7935f4e2b18424ab4eea
|
| 3 |
+
size 259328506
|
models/embeddings/aligned/anp_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "anp", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/anp_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:648c377b1a1a5d1b4666b6ec914da4647deef248b9e4cdfb29f1dc4a4348720b
|
| 3 |
+
size 4224
|
models/embeddings/aligned/anp_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "anp",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1254,
|
| 7 |
+
"vocab_size": 11815
|
| 8 |
+
}
|
models/embeddings/aligned/anp_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d070ab7b4e6d51df3ef5192423b2444c290dcd9623fdc52ba2c66ba353a51a22
|
| 3 |
+
size 518353146
|
models/embeddings/aligned/anp_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "anp", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/anp_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f1502bda2f265ab094144f926c666d9545ee36a2e459b061c3e55b39d59ca2b6
|
| 3 |
+
size 16512
|
models/embeddings/aligned/anp_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "anp",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1254,
|
| 7 |
+
"vocab_size": 11815
|
| 8 |
+
}
|
models/embeddings/monolingual/anp_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7af5575e958475f78e2345f53a960547b317d08c4f564f1e287dc68e616de125
|
| 3 |
+
size 1036402426
|
models/embeddings/monolingual/anp_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11815
|
| 15 |
}
|
models/embeddings/monolingual/anp_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62587f7000693b582c9132fe07d435b228ee6af1d47b7935f4e2b18424ab4eea
|
| 3 |
+
size 259328506
|
models/embeddings/monolingual/anp_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11815
|
| 15 |
}
|
models/embeddings/monolingual/anp_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d070ab7b4e6d51df3ef5192423b2444c290dcd9623fdc52ba2c66ba353a51a22
|
| 3 |
+
size 518353146
|
models/embeddings/monolingual/anp_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 11815
|
| 15 |
}
|
models/subword_markov/anp_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f8c7d4097372261966c6bc97fb52eb94ecf05aba1b20a249f9d296e00c88066
|
| 3 |
+
size 365191
|
models/subword_markov/anp_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 4665,
|
| 6 |
+
"total_transitions": 2668925
|
| 7 |
}
|
models/subword_markov/anp_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:181129c2fea7a83e1ee86d4443f411e555f84964df22997884ef74fa0443b196
|
| 3 |
+
size 1648766
|
models/subword_markov/anp_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 53547,
|
| 6 |
+
"total_transitions": 2665844
|
| 7 |
}
|
models/subword_markov/anp_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca8503e1796de5b1b63f4db40515f49a5fd0388d3ee34a09bdfe79795c374ca0
|
| 3 |
+
size 4906034
|
models/subword_markov/anp_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 206241,
|
| 6 |
+
"total_transitions": 2662763
|
| 7 |
}
|
models/subword_markov/anp_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e36d66386ed99fb8158cd97838a5534c8d7168ccbbec8a30652e2563e832def1
|
| 3 |
+
size 11056053
|
models/subword_markov/anp_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 551827,
|
| 6 |
+
"total_transitions": 2659682
|
| 7 |
}
|
models/subword_ngram/anp_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f2d4934c85df0e19da88307fe4c1b2c6bd7f7d7584e4e152fff2c1d790e4b622
|
| 3 |
+
size 267872
|
models/subword_ngram/anp_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_ngrams": 18130,
|
| 6 |
+
"total_ngrams": 2668925
|
| 7 |
}
|
models/subword_ngram/anp_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1ee608f9e770b8aaa0c3f06ad058eb1e57096805145b07b1f13bdd793e481aa4
|
| 3 |
+
size 1068374
|
models/subword_ngram/anp_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_ngrams": 74071,
|
| 6 |
+
"total_ngrams": 2665844
|
| 7 |
}
|
models/subword_ngram/anp_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3bae4cc49c8bd13ed2637bd3e31e241df8714d11482506bf0c1ab0ef70d2bf29
|
| 3 |
+
size 3164693
|
models/subword_ngram/anp_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_ngrams": 212245,
|
| 6 |
+
"total_ngrams": 2662763
|
| 7 |
}
|
models/subword_ngram/anp_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0c567ba5d3c542b3799178199f32bd1bd08014f13b6b375808a83d18a7d741b
|
| 3 |
+
size 4356539
|
models/subword_ngram/anp_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "anp",
|
| 5 |
+
"unique_ngrams": 271380,
|
| 6 |
+
"total_ngrams": 2659682
|
| 7 |
+
}
|
models/tokenizer/anp_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4c3741b80f17d1eae30558373a32b1e6916523b0ee40e8d07c0d64d3e8f1080
|
| 3 |
+
size 618098
|
models/tokenizer/anp_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/anp_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:811d7d1db33e325f5e70f07d4c826bf83fbc30ebff039b047a22c1b821fb235f
|
| 3 |
+
size 1035857
|
models/tokenizer/anp_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/anp_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:99896dd2de3109457e12c0c017a5ab599dab704efee42adbf365433c86e2b6e2
|
| 3 |
+
size 425391
|
models/tokenizer/anp_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/anp_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8435ca8e03a3c4b629b3f26bb34fa4898fd59714c125734fffc27034f2525995
|
| 3 |
+
size 512958
|
models/vocabulary/anp_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "anp",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "anp",
|
| 3 |
+
"vocabulary_size": 27495,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.0804783609588911,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.38180617731513744,
|
| 9 |
+
"top_1000": 0.6624765117231244,
|
| 10 |
+
"top_5000": 0.8305210669168468,
|
| 11 |
+
"top_10000": 0.8883205305842446
|
| 12 |
},
|
| 13 |
+
"hapax_count": 31866,
|
| 14 |
+
"hapax_ratio": 0.5368171021377672,
|
| 15 |
+
"total_documents": 3081
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/anp_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74c751e08e10f23f5bf6fb2e82f4cd372794298d19dc29e73d0ad818a2cdb098
|
| 3 |
+
size 3049321
|
models/word_markov/anp_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 59321,
|
| 6 |
+
"total_transitions": 734521
|
| 7 |
}
|
models/word_markov/anp_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c2f465a758b1a2d405c79c4ab4f4895682189bc3945752cf5cdfa7a1df55522f
|
| 3 |
+
size 8916451
|
models/word_markov/anp_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 344866,
|
| 6 |
+
"total_transitions": 731440
|
| 7 |
}
|
models/word_markov/anp_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37b7a565352c35ad4e7733cf1439619b49cd1bcf9a3246a903b5df21368a82f1
|
| 3 |
+
size 13044546
|
models/word_markov/anp_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "anp",
|
| 5 |
+
"unique_contexts": 537872,
|
| 6 |
+
"total_transitions": 728359
|
| 7 |
}
|