--- language: awa language_name: Awadhi language_family: indoaryan_central tags: - wikilangs - nlp - tokenizer - embeddings - n-gram - markov - wikipedia - feature-extraction - sentence-similarity - tokenization - n-grams - markov-chain - text-mining - fasttext - babelvec - vocabulous - vocabulary - monolingual - family-indoaryan_central license: mit library_name: wikilangs pipeline_tag: text-generation datasets: - omarkamali/wikipedia-monthly dataset_info: name: wikipedia-monthly description: Monthly snapshots of Wikipedia articles across 300+ languages metrics: - name: best_compression_ratio type: compression value: 3.892 - name: best_isotropy type: isotropy value: 0.7358 - name: vocabulary_size type: vocab value: 0 generated: 2026-01-03 --- # Awadhi - Wikilangs Models ## Comprehensive Research Report & Full Ablation Study This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Awadhi** Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings. ## ЁЯУЛ Repository Contents ### Models & Assets - Tokenizers (8k, 16k, 32k, 64k) - N-gram models (2, 3, 4, 5-gram) - Markov chains (context of 1, 2, 3, 4 and 5) - Subword N-gram and Markov chains - Embeddings in various sizes and dimensions (aligned and unaligned) - Language Vocabulary - Language Statistics ![Performance Dashboard](visualizations/performance_dashboard.png) ### Analysis and Evaluation - [1. Tokenizer Evaluation](#1-tokenizer-evaluation) - [2. N-gram Model Evaluation](#2-n-gram-model-evaluation) - [3. Markov Chain Evaluation](#3-markov-chain-evaluation) - [4. Vocabulary Analysis](#4-vocabulary-analysis) - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation) - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental) - [7. Summary & Recommendations](#7-summary--recommendations) - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide) - [Visualizations Index](#visualizations-index) --- ## 1. Tokenizer Evaluation ![Tokenizer Compression](visualizations/tokenizer_compression.png) ![Tokenizer Fertility](visualizations/tokenizer_fertility.png) ![Tokenizer OOV](visualizations/tokenizer_oov.png) ![Total Tokens](visualizations/tokenizer_total_tokens.png) ### Results | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens | |------------|-------------|---------------|----------|--------------| | **8k** | 3.327x | 3.33 | 0.1230% | 131,731 | | **16k** | 3.618x | 3.63 | 0.1337% | 121,145 | | **32k** | 3.892x ЁЯПЖ | 3.90 | 0.1439% | 112,611 | ### Tokenization Examples Below are sample sentences tokenized with each vocabulary size: **Sample 1:** `рдиреАрд▓рдо рд╕рдВрдЬреАрд╡ рд░реЗрдбреНрдбреА (реирен рдЕрдХреНрддреВрдмрд░ - реп рдирд╡рдВрдмрд░ рднрд╛рд░рдд рдХрдп рдЫрдард╡рд╛ рд░рд╛рд╖реНрдЯреНрд░рдкрддрд┐ рд░рд╣реЗред рд╡рдирдХрдп рдХрд╛рд░реНрдпрдХ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрдиреАрд▓рдо тЦБрд╕рдВ рдЬреАрд╡ тЦБрд░реЗрдбреНрдбреА тЦБ( реирен тЦБрдЕрдХреНрддреВрдмрд░ тЦБ- тЦБреп тЦБрдирд╡рдВрдмрд░ ... (+16 more)` | 26 | | 16k | `тЦБрдиреАрд▓рдо тЦБрд╕рдВрдЬреАрд╡ тЦБрд░реЗрдбреНрдбреА тЦБ( реирен тЦБрдЕрдХреНрддреВрдмрд░ тЦБ- тЦБреп тЦБрдирд╡рдВрдмрд░ тЦБрднрд╛рд░рдд ... (+15 more)` | 25 | | 32k | `тЦБрдиреАрд▓рдо тЦБрд╕рдВрдЬреАрд╡ тЦБрд░реЗрдбреНрдбреА тЦБ( реирен тЦБрдЕрдХреНрддреВрдмрд░ тЦБ- тЦБреп тЦБрдирд╡рдВрдмрд░ тЦБрднрд╛рд░рдд ... (+15 more)` | 25 | **Sample 2:** `рдирдХреБрдб, рднрд╛рд░рдд рджреЗрд╢ рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд рдХреЗ рд╕рд╣рд╛рд░рдирдкреБрд░ рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрд╛рд▓рд┐рдХрд╛ рдкрд░рд┐рд╖...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрди рдХреБ рдб , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд ... (+20 more)` | 30 | | 16k | `тЦБрди рдХреБ рдб , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд ... (+20 more)` | 30 | | 32k | `тЦБрдирдХреБрдб , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд тЦБрдХреЗ тЦБрд╕рд╣рд╛рд░рдирдкреБрд░ ... (+18 more)` | 28 | **Sample 3:** `рдирд╕реАрд░рд╛рдмрд╛рдж, рднрд╛рд░рдд рджреЗрд╢ рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд рдХреЗ рд░рд╛рдпрдмрд░реЗрд▓реА рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд ...` | Vocab | Tokens | Count | |-------|--------|-------| | 8k | `тЦБрди рд╕реА рд░рд╛рдмрд╛рдж , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд ... (+18 more)` | 28 | | 16k | `тЦБрди рд╕реА рд░рд╛рдмрд╛рдж , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд ... (+18 more)` | 28 | | 32k | `тЦБрдирд╕реАрд░рд╛рдмрд╛рдж , тЦБрднрд╛рд░рдд тЦБрджреЗрд╢ тЦБрдХреЗ тЦБрдЙрддреНрддрд░ тЦБрдкреНрд░рджреЗрд╢ тЦБрдкреНрд░рд╛рдиреНрдд тЦБрдХреЗ тЦБрд░рд╛рдпрдмрд░реЗрд▓реА ... (+16 more)` | 26 | ### Key Findings - **Best Compression:** 32k achieves 3.892x compression - **Lowest UNK Rate:** 8k with 0.1230% unknown tokens - **Trade-off:** Larger vocabularies improve compression but increase model size - **Recommendation:** 32k vocabulary provides optimal balance for production use --- ## 2. N-gram Model Evaluation ![N-gram Perplexity](visualizations/ngram_perplexity.png) ![N-gram Unique](visualizations/ngram_unique.png) ![N-gram Coverage](visualizations/ngram_coverage.png) ### Results | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage | |--------|---------|------------|---------|----------------|------------------|-------------------| | **2-gram** | Word | 2,396 | 11.23 | 5,750 | 28.4% | 58.2% | | **2-gram** | Subword | 1,608 ЁЯПЖ | 10.65 | 12,278 | 39.9% | 73.3% | | **3-gram** | Word | 1,666 | 10.70 | 5,103 | 35.8% | 65.6% | | **3-gram** | Subword | 10,335 | 13.34 | 44,364 | 17.1% | 41.3% | | **4-gram** | Word | 4,269 | 12.06 | 12,850 | 27.4% | 49.6% | | **4-gram** | Subword | 30,718 | 14.91 | 110,971 | 11.6% | 28.3% | | **5-gram** | Word | 3,586 | 11.81 | 10,699 | 28.4% | 52.8% | | **5-gram** | Subword | 44,082 | 15.43 | 123,963 | 10.3% | 23.7% | ### Top 5 N-grams by Size **2-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдкреНрд░рджреЗрд╢ рдХрдп` | 1,242 | | 2 | `рдХрдп рдПрдХреНрдареБ` | 1,217 | | 3 | `рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд` | 932 | | 4 | `рд╢рд╣рд░реА рдирд┐рдХрд╛рдп` | 837 | | 5 | `рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢` | 774 | **3-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдХрдп рдПрдХреНрдареБ рдирдЧрд░` | 700 | | 2 | `рднрд╛рд░рдд рджреЗрд╢ рдХреЗ` | 696 | | 3 | `рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ` | 680 | | 4 | `рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп` | 667 | | 5 | `рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢` | 586 | **4-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░` | 661 | | 2 | `рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд` | 582 | | 3 | `рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп` | 581 | | 4 | `рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢` | 581 | | 5 | `рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп` | 581 | **5-grams (Word):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░` | 581 | | 2 | `рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп` | 581 | | 3 | `рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢` | 581 | | 4 | `рджреЗрд╢ рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд` | 580 | | 5 | `рднрд╛рд░рдд рджреЗрд╢ рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢` | 580 | **2-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рд░ _` | 19,312 | | 2 | `рдп _` | 17,947 | | 3 | `_ рдХ` | 16,677 | | 4 | `рди _` | 14,033 | | 5 | `ред _` | 12,197 | **3-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `рдХ рдп _` | 10,878 | | 2 | `_ рдХ рдп` | 10,634 | | 3 | `_ рдХреЗ _` | 7,599 | | 4 | `_ рд╕реЗ _` | 4,267 | | 5 | `_ рдореЗрдВ _` | 4,065 | **4-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ рдХ рдп _` | 10,589 | | 2 | `_ рдкреНрд░ рджреЗ рд╢` | 2,239 | | 3 | `рдкреНрд░ рджреЗ рд╢ _` | 2,188 | | 4 | `_ рд╣реИ ред _` | 2,147 | | 5 | `рднрд╛ рд░ рдд _` | 2,022 | **5-grams (Subword):** | Rank | N-gram | Count | |------|--------|-------| | 1 | `_ рдкреНрд░ рджреЗ рд╢ _` | 2,171 | | 2 | `_ рднрд╛ рд░ рдд _` | 1,826 | | 3 | `_ рди рдЧ рд░ _` | 1,779 | | 4 | `_ рдХ рдп _ рдП` | 1,494 | | 5 | `_ рдЕ рдЙ рд░ _` | 1,449 | ### Key Findings - **Best Perplexity:** 2-gram (subword) with 1,608 - **Entropy Trend:** Decreases with larger n-grams (more predictable) - **Coverage:** Top-1000 patterns cover ~24% of corpus - **Recommendation:** 4-gram or 5-gram for best predictive performance --- ## 3. Markov Chain Evaluation ![Markov Entropy](visualizations/markov_entropy.png) ![Markov Contexts](visualizations/markov_contexts.png) ![Markov Branching](visualizations/markov_branching.png) ### Results | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability | |---------|---------|-------------|------------|------------------|-----------------|----------------| | **1** | Word | 0.7360 | 1.666 | 4.24 | 38,944 | 26.4% | | **1** | Subword | 1.0397 | 2.056 | 10.73 | 3,744 | 0.0% | | **2** | Word | 0.1950 | 1.145 | 1.36 | 164,372 | 80.5% | | **2** | Subword | 0.5443 | 1.458 | 3.48 | 40,149 | 45.6% | | **3** | Word | 0.0479 | 1.034 | 1.07 | 222,536 | 95.2% | | **3** | Subword | 0.4540 | 1.370 | 2.32 | 139,753 | 54.6% | | **4** | Word | 0.0142 ЁЯПЖ | 1.010 | 1.02 | 236,208 | 98.6% | | **4** | Subword | 0.2417 | 1.182 | 1.52 | 323,693 | 75.8% | ### Generated Text Samples (Word-based) Below are text samples generated from each word-based Markov chain model: **Context Size 1:** 1. `рдХрдп рд╕реБрд╡рд┐рдзрд╛рдЬрдирдХ рдмрдирд╛рд╡реЗрдХ рдЕрдиреНрддрд░реНрд░рд╛рд╖реНрдЯреНрд░реАрдп рд╣рд╡рд╛рдИрдЧрд┐рд░рд╛рди рдлрд╛рдкреНрд▓реБ рднреЛрдЬрдкреБрд░ рдлрд░реНрд░реБрдЦрд╛рдмрд╛рдж 195 рдХрд╛рд╕рдЧрдВрдЬ рдЬрд┐рд▓рд╛ рдЖрд╡рдд рд╣реИрдВ рдореЗрдШрд╛рд▓...` 2. `рдХреЗ рдЙрддреНрддрд░ рднрд╛рд░рддреАрдп рд░реБрдкрдпрд╛ рд▓реЗрдЦ рдЖрд╕рд╛рдиреА рд╕реЗ рдЦреЗрд▓реЗ рд░рд╣реЗрдВ рдШрд░реЗрд▓реВ рдХреНрд░рд┐рдХреЗрдЯ рд░рд╣реЗрдВ рдЖрджрд┐рддреНрдпрдирд╛рде рдХрдп рд░рд╛рдЬрдиреАрддрд┐ рдореЗрдВ` 3. `рд╕реЗ рджрдХреНрд╖рд┐рдг рджрд┐рд▓реНрд▓реА рдореЗрдЯреНрд░реЛ рдлрд╝рд┐рд▓реНрдордлрд╝реЗрдпрд░ рд╕рд░реНрд╡рд╢реНрд░реЗрд╖реНрда рддрдорд┐рд▓ рддреЗрд▓реБрдЧреВ р░╡р░┐р░Хр░╛р░░р░╛р░мр░╛р░жр▒Б р░Ьр░┐р░▓р▒Нр░▓р░╛ рдЕрдВрдЧреНрд░реЗрдЬрд╝реА рдореЗрдВ рдЧрдВрдЧрд╛ рдирджреА...` **Context Size 2:** 1. `рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд рд╣реЛрдп рд╕рдВрджрд░реНрдн рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░` 2. `рдХрдп рдПрдХреНрдареБ рднрд╛рд╖рд╛ рд╣реЛрдп рдИ рдИрд▓реЗрдХреНрдЯреНрд░реЛрди рдкреНрд░реЛрдЯреЛрди рдЕрд╡ рдиреНрдпреБрдЯреНрд░реЛрди рд╕реЗ рдмрдирд╛ рд╣реИ рд╣рд┐рдорд╛рд▓рдп рдХреНрд╖реЗрддреНрд░ рдореЗрдВ рдордиреБрд╖реНрдпреЛрдВ рдХрд╛` 3. `рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд рдХреЗ рд╢рд╛рдорд▓реА рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрд╛рд▓рд┐рдХрд╛ рдкрд░рд┐рд╖рдж рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░` **Context Size 3:** 1. `рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд рд╣реЛрдп рд╕рдВрджрд░реНрдн рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд рдкрдВрдЪрд╛рдпрдд рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп` 2. `рднрд╛рд░рдд рджреЗрд╢ рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд рдХрдп рдПрдХреНрдареБ рдЬрд┐рд▓рд╛ рд╣реЛрдп рдЗрд╣реМ рджреЗрдЦреИрдВ рдХрд╛рдорд╛рд░реЗрдбреНрдбреА рддреЗрд▓рдВрдЧрд╛рдирд╛ рддреЗрд▓рдВрдЧрд╛рдирд╛ рдХрдп рдЬрд┐рд▓рд╛ рд╕рди...` 3. `рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрд╛рд▓рд┐рдХрд╛ рдкрд░рд┐рд╖рдж рд╣реЛрдп рд╕рдВрджрд░реНрдн 1 рдЙрддреНрддрд░рд╛рдЦрдВрдб рдХреЗ рд╕рдЧрд░реМ рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдХрдп рд╕реВрдЪреА 2 рдЙрддреНрддрд░рд╛рдЦрдВрдб` **Context Size 4:** 1. `рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд рд╣реЛрдп рд╕рдВрджрд░реНрдн рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд noinclude` 2. `рдХреЗ рдЙрддреНрддрд░ рдкреНрд░рджреЗрд╢ рдкреНрд░рд╛рдиреНрдд рдХреЗ рд╕реАрддрд╛рдкреБрд░ рдЬрд┐рд▓рд╛ рдХрдп рдПрдХреНрдареБ рдирдЧрд░ рдкрд╛рд▓рд┐рдХрд╛ рдкрд░рд┐рд╖рдж рд╣реЛрдп рд╕рдВрджрд░реНрдн рдкреНрд░рджреЗрд╢ рдХрдп рд╢рд╣рд░реА рдирд┐рдХрд╛рдп рдкреН...` 3. `рдирд┐рдХрд╛рдп рдкреНрд░рджреЗрд╢ рдХрдп рдирдЧрд░ рдкрдВрдЪрд╛рдпрдд рджреЗрд╣рд╛рдд` ### Generated Text Samples (Subword-based) Below are text samples generated from each subword-based Markov chain model: **Context Size 1:** 1. `_рдХреЗ_рд╣рдВрдпрди_рд╣_рд╕рд╣рдЗ_рдкрд╛рд▓рд╡` 2. `рд░рддрд╣_рд░реЗрдВред_рдХреЗрд░_рдк_10_рдкреНрд░рд╛` 3. `рдХрдп_рдХреАред_рдХреЗ_рдЗрддрд┐_-atem` **Context Size 2:** 1. `рд░_рд╣рд░рд╛_рдЧрд╛рдВрд╡_рдкрд░рд┐рд╖рдж_рдкрд╛рд░реНрдЯреА_(` 2. `рдп_рд╕рдВрдЧреАрдд-рд╣реЛрд▓реНрд╕рдЯреАрди,_рдЖрдВрдзреНрд░рдкреНрд░рджреЗрд╢` 3. `_рдХрдп_рдЬрдиреНрдо_рей_рдорджреНрд░рд╛рд╕)_рд╢рд┐рдХреНрд╖рд╛_` **Context Size 3:** 1. `рдХрдп_рдирд┐рдХреЛрд╕рд┐рдпрд╛_рдХрд╛_рдпрд╢_рдЪреЛрдкрдбрд╝рд╛_рдЖ` 2. `_рдХрдп_рд╢рд╣рд░_рд╕рд┐рд░рд╕рд╛_16_44_` 3. `_рдХреЗ_рднреЗрд╕_рдЕрдиреБрд╡рд╛рджрд┐рдд_рддрдм_рдУрдХрд╛_` **Context Size 4:** 1. `_рдХрдп_резрелрд╡рд╛рдБ_рд░рд╛рд╖реНрдЯреНрд░рдкрддрд┐_рд░рд╣реЗред_рдпрд╣` 2. `_рдкреНрд░рджреЗрд╢_рдХрдп_рднреА_рдЕрд╡рд┐рд╡рд╛рд╣рд┐рдд_рднрд╛рдИ_` 3. `рдкреНрд░рджреЗрд╢_рдкреНрд░рд╛рдиреНрдд_рдХреЗ_рдЧрд╛рдЬрд┐рдпрд╛рдмрд╛рдж_рдЬрд┐рд▓рд╛_рдХ` ### Key Findings - **Best Predictability:** Context-4 (word) with 98.6% predictability - **Branching Factor:** Decreases with context size (more deterministic) - **Memory Trade-off:** Larger contexts require more storage (323,693 contexts) - **Recommendation:** Context-3 or Context-4 for text generation --- ## 4. Vocabulary Analysis ![Zipf's Law](visualizations/zipf_law.png) ![Top Words](visualizations/top20_words.png) ![Coverage Curve](visualizations/vocab_coverage.png) ### Statistics | Metric | Value | |--------|-------| | Vocabulary Size | 16,641 | | Total Tokens | 263,395 | | Mean Frequency | 15.83 | | Median Frequency | 3 | | Frequency Std Dev | 138.02 | ### Most Common Words | Rank | Word | Frequency | |------|------|-----------| | 1 | рдХрдп | 10,633 | | 2 | рдХреЗ | 7,622 | | 3 | рд╕реЗ | 4,333 | | 4 | рдореЗрдВ | 4,224 | | 5 | рд╣реИ | 3,954 | | 6 | рдорд╛ | 3,849 | | 7 | рд╣реЛрдп | 2,668 | | 8 | рдХрд╛ | 2,628 | | 9 | рдкреНрд░рджреЗрд╢ | 2,217 | | 10 | рднрд╛рд░рдд | 1,996 | ### Least Common Words (from vocabulary) | Rank | Word | Frequency | |------|------|-----------| | 1 | рдореЛрдбрд╝рд╛ | 2 | | 2 | рдХреАрдорд╛ | 2 | | 3 | рдЪреМрдХреЛрд░рди | 2 | | 4 | рджрд░реНрд░реЗ | 2 | | 5 | рдЧрд┐рдЬрд░ | 2 | | 6 | рддрдбрд╝рд╣реБрдВрдЧ | 2 | | 7 | рдХрд▓рд╛рдХреГрддрд┐ | 2 | | 8 | рд╕реНрдЯреЗрдкреА | 2 | | 9 | рдУрд▓реЗрдХреНрд╕рд╛рдиреНрдбреНрд░реЛрд╡рд┐рдЪ | 2 | | 10 | рдЯреАрдПрд╕рдПрди | 2 | ### Zipf's Law Analysis | Metric | Value | |--------|-------| | Zipf Coefficient | 1.0518 | | R┬▓ (Goodness of Fit) | 0.990696 | | Adherence Quality | **excellent** | ### Coverage Analysis | Top N Words | Coverage | |-------------|----------| | Top 100 | 38.1% | | Top 1,000 | 66.2% | | Top 5,000 | 87.3% | | Top 10,000 | 94.8% | ### Key Findings - **Zipf Compliance:** R┬▓=0.9907 indicates excellent adherence to Zipf's law - **High Frequency Dominance:** Top 100 words cover 38.1% of corpus - **Long Tail:** 6,641 words needed for remaining 5.2% coverage --- ## 5. Word Embeddings Evaluation ![Embedding Isotropy](visualizations/embedding_isotropy.png) ![Similarity Matrix](visualizations/embedding_similarity.png) ![t-SNE Words](visualizations/tsne_words.png) ![t-SNE Sentences](visualizations/tsne_sentences.png) ### 5.1 Cross-Lingual Alignment ![Alignment Quality](visualizations/embedding_alignment_quality.png) ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png) ### 5.2 Model Comparison | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 | |-------|-----------|----------|------------------|---------------|----------------| | **mono_32d** | 32 | 0.7358 | 0.3755 | N/A | N/A | | **mono_64d** | 64 | 0.3489 | 0.3581 | N/A | N/A | | **mono_128d** | 128 | 0.0808 | 0.3463 | N/A | N/A | | **aligned_32d** | 32 | 0.7358 ЁЯПЖ | 0.3759 | 0.0299 | 0.1549 | | **aligned_64d** | 64 | 0.3489 | 0.3500 | 0.0245 | 0.1848 | | **aligned_128d** | 128 | 0.0808 | 0.3480 | 0.0571 | 0.2636 | ### Key Findings - **Best Isotropy:** aligned_32d with 0.7358 (more uniform distribution) - **Semantic Density:** Average pairwise similarity of 0.3590. Lower values indicate better semantic separation. - **Alignment Quality:** Aligned models achieve up to 5.7% R@1 in cross-lingual retrieval. - **Recommendation:** 128d aligned for best cross-lingual performance --- ## 6. Morphological Analysis (Experimental) This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data. ### 6.1 Productivity & Complexity | Metric | Value | Interpretation | Recommendation | |--------|-------|----------------|----------------| | Productivity Index | **5.000** | High morphological productivity | Reliable analysis | | Idiomaticity Gap | **1.225** | High formulaic/idiomatic content | - | ### 6.2 Affix Inventory (Productive Units) These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts. *No productive affixes detected.* ### 6.3 Bound Stems (Lexical Roots) Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid. *No significant bound stems detected.* ### 6.4 Affix Compatibility (Co-occurrence) This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology. *No significant affix co-occurrences detected.* ### 6.5 Recursive Morpheme Segmentation Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`). *Insufficient data for recursive segmentation.* ### 6.6 Linguistic Interpretation > **Automated Insight:** The language Awadhi shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding. > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts. --- ## 7. Summary & Recommendations ![Performance Dashboard](visualizations/performance_dashboard.png) ### Production Recommendations | Component | Recommended | Rationale | |-----------|-------------|-----------| | Tokenizer | **32k BPE** | Best compression (3.89x) | | N-gram | **2-gram** | Lowest perplexity (1,608) | | Markov | **Context-4** | Highest predictability (98.6%) | | Embeddings | **100d** | Balanced semantic capture and isotropy | --- ## Appendix: Metrics Glossary & Interpretation Guide This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report. ### Tokenizer Metrics **Compression Ratio** > *Definition:* The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text. > > *Intuition:* Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average. > > *What to seek:* Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information. **Average Token Length (Fertility)** > *Definition:* Mean number of characters per token produced by the tokenizer. > > *Intuition:* Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length. > > *What to seek:* Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens. **Unknown Token Rate (OOV Rate)** > *Definition:* Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent. > > *Intuition:* Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences. > > *What to seek:* Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback. ### N-gram Model Metrics **Perplexity** > *Definition:* Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction. > > *Intuition:* If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options. > > *What to seek:* Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size. **Entropy** > *Definition:* Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy. > > *Intuition:* High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character. > > *What to seek:* Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases. **Coverage (Top-K)** > *Definition:* Percentage of corpus occurrences explained by the top K most frequent n-grams. > > *Intuition:* High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage. > > *What to seek:* Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text. ### Markov Chain Metrics **Average Entropy** > *Definition:* Mean entropy across all contexts, measuring average uncertainty in next-word prediction. > > *Intuition:* Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations). > > *What to seek:* Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions. **Branching Factor** > *Definition:* Average number of unique next tokens observed for each context. > > *Intuition:* High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive). > > *What to seek:* Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains. **Predictability** > *Definition:* Derived metric: (1 - normalized_entropy) ├Ч 100%. Indicates how deterministic the model's predictions are. > > *Intuition:* 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes. > > *What to seek:* Higher predictability for text generation quality, but too high (>98%) may produce repetitive output. ### Vocabulary & Zipf's Law Metrics **Zipf's Coefficient** > *Definition:* The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1. > > *Intuition:* A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare. > > *What to seek:* Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text. **R┬▓ (Coefficient of Determination)** > *Definition:* Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1. > > *Intuition:* R┬▓ near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns. > > *What to seek:* R┬▓ > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora. **Vocabulary Coverage** > *Definition:* Cumulative percentage of corpus tokens accounted for by the top N words. > > *Intuition:* Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words. > > *What to seek:* Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary. ### Word Embedding Metrics **Isotropy** > *Definition:* Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values. > > *Intuition:* High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness. > > *What to seek:* Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy. **Average Norm** > *Definition:* Mean magnitude (L2 norm) of word vectors in the embedding space. > > *Intuition:* Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained. > > *What to seek:* Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation). **Cosine Similarity** > *Definition:* Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction). > > *Intuition:* Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings. > > *What to seek:* Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7. **t-SNE Visualization** > *Definition:* t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization. > > *Intuition:* Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence. > > *What to seek:* Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure. ### General Interpretation Guidelines 1. **Compare within model families:** Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer). 2. **Consider trade-offs:** Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate). 3. **Context matters:** Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification. 4. **Corpus influence:** All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature. 5. **Language-specific patterns:** Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages. ### Visualizations Index | Visualization | Description | |---------------|-------------| | Tokenizer Compression | Compression ratios by vocabulary size | | Tokenizer Fertility | Average token length by vocabulary | | Tokenizer OOV | Unknown token rates | | Tokenizer Total Tokens | Total tokens by vocabulary | | N-gram Perplexity | Perplexity by n-gram size | | N-gram Entropy | Entropy by n-gram size | | N-gram Coverage | Top pattern coverage | | N-gram Unique | Unique n-gram counts | | Markov Entropy | Entropy by context size | | Markov Branching | Branching factor by context | | Markov Contexts | Unique context counts | | Zipf's Law | Frequency-rank distribution with fit | | Vocab Frequency | Word frequency distribution | | Top 20 Words | Most frequent words | | Vocab Coverage | Cumulative coverage curve | | Embedding Isotropy | Vector space uniformity | | Embedding Norms | Vector magnitude distribution | | Embedding Similarity | Word similarity heatmap | | Nearest Neighbors | Similar words for key terms | | t-SNE Words | 2D word embedding visualization | | t-SNE Sentences | 2D sentence embedding visualization | | Position Encoding | Encoding method comparison | | Model Sizes | Storage requirements | | Performance Dashboard | Comprehensive performance overview | --- ## About This Project ### Data Source Models trained on [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - a monthly snapshot of Wikipedia articles across 300+ languages. ### Project A project by **[Wikilangs](https://wikilangs.org)** - Open-source NLP models for every Wikipedia language. ### Maintainer [Omar Kamali](https://omarkamali.com) - [Omneity Labs](https://omneitylabs.com) ### Citation If you use these models in your research, please cite: ```bibtex @misc{wikilangs2025, author = {Kamali, Omar}, title = {Wikilangs: Open NLP Models for Wikipedia Languages}, year = {2025}, doi = {10.5281/zenodo.18073153}, publisher = {Zenodo}, url = {https://huggingface.co/wikilangs} institution = {Omneity Labs} } ``` ### License MIT License - Free for academic and commercial use. ### Links - ЁЯМР Website: [wikilangs.org](https://wikilangs.org) - ЁЯдЧ Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs) - ЁЯУК Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly) - ЁЯСд Author: [Omar Kamali](https://huggingface.co/omarkamali) - ЁЯдЭ Sponsor: [Featherless AI](https://featherless.ai) --- *Generated by Wikilangs Models Pipeline* *Report Date: 2026-01-03 17:51:14*