Upload all models and assets for bar (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +213 -179
- models/embeddings/aligned/bar_128d.bin +3 -0
- models/embeddings/aligned/bar_128d.meta.json +1 -0
- models/embeddings/aligned/bar_128d.projection.npy +3 -0
- models/embeddings/aligned/bar_128d_metadata.json +8 -0
- models/embeddings/aligned/bar_32d.bin +3 -0
- models/embeddings/aligned/bar_32d.meta.json +1 -0
- models/embeddings/aligned/bar_32d.projection.npy +3 -0
- models/embeddings/aligned/bar_32d_metadata.json +8 -0
- models/embeddings/aligned/bar_64d.bin +3 -0
- models/embeddings/aligned/bar_64d.meta.json +1 -0
- models/embeddings/aligned/bar_64d.projection.npy +3 -0
- models/embeddings/aligned/bar_64d_metadata.json +8 -0
- models/embeddings/monolingual/bar_128d.bin +2 -2
- models/embeddings/monolingual/bar_128d_metadata.json +1 -1
- models/embeddings/monolingual/bar_32d.bin +2 -2
- models/embeddings/monolingual/bar_32d_metadata.json +1 -1
- models/embeddings/monolingual/bar_64d.bin +2 -2
- models/embeddings/monolingual/bar_64d_metadata.json +1 -1
- models/subword_markov/bar_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/bar_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/bar_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/bar_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/bar_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/bar_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/bar_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/bar_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/bar_2gram_subword.parquet +2 -2
- models/subword_ngram/bar_2gram_subword_metadata.json +2 -2
- models/subword_ngram/bar_3gram_subword.parquet +2 -2
- models/subword_ngram/bar_3gram_subword_metadata.json +2 -2
- models/subword_ngram/bar_4gram_subword.parquet +2 -2
- models/subword_ngram/bar_4gram_subword_metadata.json +2 -2
- models/subword_ngram/bar_5gram_subword.parquet +3 -0
- models/subword_ngram/bar_5gram_subword_metadata.json +7 -0
- models/tokenizer/bar_tokenizer_16k.model +2 -2
- models/tokenizer/bar_tokenizer_16k.vocab +0 -0
- models/tokenizer/bar_tokenizer_32k.model +2 -2
- models/tokenizer/bar_tokenizer_32k.vocab +0 -0
- models/tokenizer/bar_tokenizer_64k.model +2 -2
- models/tokenizer/bar_tokenizer_64k.vocab +0 -0
- models/tokenizer/bar_tokenizer_8k.model +2 -2
- models/tokenizer/bar_tokenizer_8k.vocab +0 -0
- models/vocabulary/bar_vocabulary.parquet +2 -2
- models/vocabulary/bar_vocabulary_metadata.json +9 -9
- models/word_markov/bar_markov_ctx1_word.parquet +2 -2
- models/word_markov/bar_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/bar_markov_ctx2_word.parquet +2 -2
- models/word_markov/bar_markov_ctx2_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: bar
|
| 3 |
-
language_name:
|
| 4 |
language_family: germanic_west_continental
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-germanic_west_continental
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 4.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **8k** | 3.167x | 3.17 | 0.
|
| 84 |
-
| **16k** | 3.
|
| 85 |
-
| **32k** | 3.
|
| 86 |
-
| **64k** | 4.
|
| 87 |
|
| 88 |
### Tokenization Examples
|
| 89 |
|
| 90 |
Below are sample sentences tokenized with each vocabulary size:
|
| 91 |
|
| 92 |
-
**Sample 1:** `
|
| 93 |
|
| 94 |
| Vocab | Tokens | Count |
|
| 95 |
|-------|--------|-------|
|
| 96 |
-
| 8k | `▁
|
| 97 |
-
| 16k | `▁
|
| 98 |
-
| 32k | `▁
|
| 99 |
-
| 64k | `▁
|
| 100 |
|
| 101 |
-
**Sample 2:** `
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
-
| 8k | `▁
|
| 106 |
-
| 16k | `▁
|
| 107 |
-
| 32k | `▁
|
| 108 |
-
| 64k | `▁
|
| 109 |
|
| 110 |
-
**Sample 3:** `
|
| 111 |
|
| 112 |
| Vocab | Tokens | Count |
|
| 113 |
|-------|--------|-------|
|
| 114 |
-
| 8k | `▁
|
| 115 |
-
| 16k | `▁
|
| 116 |
-
| 32k | `▁
|
| 117 |
-
| 64k | `▁
|
| 118 |
|
| 119 |
|
| 120 |
### Key Findings
|
| 121 |
|
| 122 |
-
- **Best Compression:** 64k achieves 4.
|
| 123 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 124 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 125 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 126 |
|
|
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 137 |
|
| 138 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 139 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 140 |
-
| **2-gram** | Word | 27,
|
| 141 |
-
| **2-gram** | Subword |
|
| 142 |
-
| **3-gram** | Word |
|
| 143 |
-
| **3-gram** | Subword | 3,
|
| 144 |
-
| **4-gram** | Word |
|
| 145 |
-
| **4-gram** | Subword | 27,
|
|
|
|
|
|
|
| 146 |
|
| 147 |
### Top 5 N-grams by Size
|
| 148 |
|
|
@@ -150,68 +162,88 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 150 |
|
| 151 |
| Rank | N-gram | Count |
|
| 152 |
|------|--------|-------|
|
| 153 |
-
| 1 | `vo da` | 26,
|
| 154 |
-
| 2 | `is a` | 22,
|
| 155 |
-
| 3 | `in da` | 22,
|
| 156 |
-
| 4 | `im netz` | 14,
|
| 157 |
-
| 5 | `vo de` | 13,
|
| 158 |
|
| 159 |
**3-grams (Word):**
|
| 160 |
|
| 161 |
| Rank | N-gram | Count |
|
| 162 |
|------|--------|-------|
|
| 163 |
-
| 1 | `beleg im netz` | 3,
|
| 164 |
| 2 | `in da usa` | 3,478 |
|
| 165 |
| 3 | `da beziak hod` | 2,393 |
|
| 166 |
-
| 4 | `
|
| 167 |
-
| 5 | `
|
| 168 |
|
| 169 |
**4-grams (Word):**
|
| 170 |
|
| 171 |
| Rank | N-gram | Count |
|
| 172 |
|------|--------|-------|
|
| 173 |
-
| 1 | `beleg im netz in` | 1,
|
| 174 |
-
| 2 | `da sitz vo da` | 1,
|
| 175 |
| 3 | `is a county in` | 1,429 |
|
| 176 |
| 4 | `in da usa da` | 1,407 |
|
| 177 |
| 5 | `a katastralgmoa in da` | 1,387 |
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
**2-grams (Subword):**
|
| 180 |
|
| 181 |
| Rank | N-gram | Count |
|
| 182 |
|------|--------|-------|
|
| 183 |
-
| 1 | `n _` |
|
| 184 |
-
| 2 | `a _` |
|
| 185 |
-
| 3 | `c h` |
|
| 186 |
-
| 4 | `_ d` |
|
| 187 |
-
| 5 | `e _` |
|
| 188 |
|
| 189 |
**3-grams (Subword):**
|
| 190 |
|
| 191 |
| Rank | N-gram | Count |
|
| 192 |
|------|--------|-------|
|
| 193 |
-
| 1 | `s c h` |
|
| 194 |
-
| 2 | `_ d e` |
|
| 195 |
-
| 3 | `_ d a` |
|
| 196 |
-
| 4 | `n d _` |
|
| 197 |
-
| 5 | `
|
| 198 |
|
| 199 |
**4-grams (Subword):**
|
| 200 |
|
| 201 |
| Rank | N-gram | Count |
|
| 202 |
|------|--------|-------|
|
| 203 |
-
| 1 | `_ d a _` |
|
| 204 |
-
| 2 | `_ d e _` |
|
| 205 |
-
| 3 | `u n d _` |
|
| 206 |
-
| 4 | `_ u n d` |
|
| 207 |
-
| 5 | `i s c h` |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
|
| 210 |
### Key Findings
|
| 211 |
|
| 212 |
-
- **Best Perplexity:** 2-gram (subword) with
|
| 213 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 214 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 215 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 216 |
|
| 217 |
---
|
|
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 227 |
|
| 228 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 229 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 230 |
-
| **1** | Word | 0.
|
| 231 |
-
| **1** | Subword | 0.
|
| 232 |
-
| **2** | Word | 0.
|
| 233 |
-
| **2** | Subword | 0.
|
| 234 |
-
| **3** | Word | 0.
|
| 235 |
-
| **3** | Subword | 0.
|
| 236 |
-
| **4** | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,
|
| 237 |
-
| **4** | Subword | 0.
|
| 238 |
|
| 239 |
### Generated Text Samples (Word-based)
|
| 240 |
|
|
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 242 |
|
| 243 |
**Context Size 1:**
|
| 244 |
|
| 245 |
-
1. `de
|
| 246 |
-
2. `da
|
| 247 |
-
3. `und
|
| 248 |
|
| 249 |
**Context Size 2:**
|
| 250 |
|
| 251 |
-
1. `vo da
|
| 252 |
-
2. `is a
|
| 253 |
-
3. `in da
|
| 254 |
|
| 255 |
**Context Size 3:**
|
| 256 |
|
| 257 |
-
1. `in da usa beleg im netz in
|
| 258 |
-
2. `beleg im netz
|
| 259 |
-
3. `da beziak hod
|
| 260 |
|
| 261 |
**Context Size 4:**
|
| 262 |
|
| 263 |
-
1. `beleg im netz in
|
| 264 |
-
2. `da sitz vo da
|
| 265 |
-
3. `is a county in
|
| 266 |
|
| 267 |
|
| 268 |
### Generated Text Samples (Subword-based)
|
|
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 271 |
|
| 272 |
**Context Size 1:**
|
| 273 |
|
| 274 |
-
1. `
|
| 275 |
-
2. `
|
| 276 |
-
3. `
|
| 277 |
|
| 278 |
**Context Size 2:**
|
| 279 |
|
| 280 |
-
1. `
|
| 281 |
-
2. `
|
| 282 |
-
3. `
|
| 283 |
|
| 284 |
**Context Size 3:**
|
| 285 |
|
| 286 |
-
1. `
|
| 287 |
-
2. `
|
| 288 |
-
3. `
|
| 289 |
|
| 290 |
**Context Size 4:**
|
| 291 |
|
| 292 |
-
1. `
|
| 293 |
-
2. `
|
| 294 |
-
3. `
|
| 295 |
|
| 296 |
|
| 297 |
### Key Findings
|
| 298 |
|
| 299 |
- **Best Predictability:** Context-4 (word) with 97.8% predictability
|
| 300 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 301 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 302 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 303 |
|
| 304 |
---
|
|
@@ -314,48 +346,48 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 314 |
|
| 315 |
| Metric | Value |
|
| 316 |
|--------|-------|
|
| 317 |
-
| Vocabulary Size |
|
| 318 |
-
| Total Tokens | 5,
|
| 319 |
-
| Mean Frequency | 25.
|
| 320 |
| Median Frequency | 3 |
|
| 321 |
-
| Frequency Std Dev |
|
| 322 |
|
| 323 |
### Most Common Words
|
| 324 |
|
| 325 |
| Rank | Word | Frequency |
|
| 326 |
|------|------|-----------|
|
| 327 |
-
| 1 | de |
|
| 328 |
-
| 2 | da |
|
| 329 |
-
| 3 | und | 119,
|
| 330 |
-
| 4 | in |
|
| 331 |
-
| 5 | a | 92,
|
| 332 |
-
| 6 | vo |
|
| 333 |
-
| 7 | is | 86,
|
| 334 |
-
| 8 | im |
|
| 335 |
-
| 9 | des |
|
| 336 |
-
| 10 | hod | 30,
|
| 337 |
|
| 338 |
### Least Common Words (from vocabulary)
|
| 339 |
|
| 340 |
| Rank | Word | Frequency |
|
| 341 |
|------|------|-----------|
|
| 342 |
-
| 1 |
|
| 343 |
-
| 2 |
|
| 344 |
-
| 3 |
|
| 345 |
-
| 4 |
|
| 346 |
-
| 5 |
|
| 347 |
-
| 6 |
|
| 348 |
-
| 7 |
|
| 349 |
-
| 8 |
|
| 350 |
-
| 9 |
|
| 351 |
-
| 10 |
|
| 352 |
|
| 353 |
### Zipf's Law Analysis
|
| 354 |
|
| 355 |
| Metric | Value |
|
| 356 |
|--------|-------|
|
| 357 |
-
| Zipf Coefficient | 0.
|
| 358 |
-
| R² (Goodness of Fit) | 0.
|
| 359 |
| Adherence Quality | **excellent** |
|
| 360 |
|
| 361 |
### Coverage Analysis
|
|
@@ -371,7 +403,7 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 371 |
|
| 372 |
- **Zipf Compliance:** R²=0.9994 indicates excellent adherence to Zipf's law
|
| 373 |
- **High Frequency Dominance:** Top 100 words cover 34.1% of corpus
|
| 374 |
-
- **Long Tail:**
|
| 375 |
|
| 376 |
---
|
| 377 |
## 5. Word Embeddings Evaluation
|
|
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 387 |
|
| 388 |
### 5.1 Cross-Lingual Alignment
|
| 389 |
|
| 390 |
-
|
|
|
|
|
|
|
| 391 |
|
| 392 |
|
| 393 |
### 5.2 Model Comparison
|
| 394 |
|
| 395 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 396 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 397 |
-
| **mono_32d** | 32 | 0.
|
| 398 |
-
| **mono_64d** | 64 | 0.
|
| 399 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
### Key Findings
|
| 402 |
|
| 403 |
-
- **Best Isotropy:**
|
| 404 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 405 |
-
- **Alignment Quality:**
|
| 406 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 407 |
|
| 408 |
---
|
| 409 |
## 6. Morphological Analysis (Experimental)
|
| 410 |
|
| 411 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 412 |
-
|
| 413 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 414 |
|
| 415 |
### 6.1 Productivity & Complexity
|
| 416 |
|
| 417 |
| Metric | Value | Interpretation | Recommendation |
|
| 418 |
|--------|-------|----------------|----------------|
|
| 419 |
-
| Productivity Index | **
|
| 420 |
-
| Idiomaticity Gap |
|
| 421 |
|
| 422 |
### 6.2 Affix Inventory (Productive Units)
|
| 423 |
|
|
@@ -426,17 +461,18 @@ These are the most productive prefixes and suffixes identified by sampling the v
|
|
| 426 |
#### Productive Prefixes
|
| 427 |
| Prefix | Examples |
|
| 428 |
|--------|----------|
|
| 429 |
-
| `-
|
| 430 |
-
| `-
|
| 431 |
|
| 432 |
#### Productive Suffixes
|
| 433 |
| Suffix | Examples |
|
| 434 |
|--------|----------|
|
| 435 |
-
| `-n` |
|
| 436 |
-
| `-en` |
|
| 437 |
-
| `-
|
| 438 |
-
| `-
|
| 439 |
-
| `-ch` |
|
|
|
|
| 440 |
|
| 441 |
### 6.3 Bound Stems (Lexical Roots)
|
| 442 |
|
|
@@ -444,18 +480,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 444 |
|
| 445 |
| Stem | Cohesion | Substitutability | Examples |
|
| 446 |
|------|----------|------------------|----------|
|
| 447 |
-
| `
|
| 448 |
-
| `
|
| 449 |
-
| `
|
| 450 |
-
| `
|
| 451 |
-
| `
|
| 452 |
-
| `itsc` | 2.
|
| 453 |
-
| `
|
| 454 |
-
| `
|
| 455 |
-
| `
|
| 456 |
-
| `
|
| 457 |
-
| `
|
| 458 |
-
| `
|
| 459 |
|
| 460 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 461 |
|
|
@@ -463,16 +499,12 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
|
|
| 463 |
|
| 464 |
| Prefix | Suffix | Frequency | Examples |
|
| 465 |
|--------|--------|-----------|----------|
|
| 466 |
-
| `-sc` | `-n` |
|
| 467 |
-
| `-
|
| 468 |
-
| `-sc` | `-en` | 13 words |
|
| 469 |
-
| `-
|
| 470 |
-
| `-sc` | `-
|
| 471 |
-
| `-sc` | `-
|
| 472 |
-
| `-be` | `-en` | 9 words | berichtigungen, beten |
|
| 473 |
-
| `-be` | `-ch` | 4 words | besuch, bessenbach |
|
| 474 |
-
| `-be` | `-er` | 3 words | bettinger, berghammer |
|
| 475 |
-
| `-sc` | `-ng` | 3 words | schoidruckpeglmindarung, schiefling |
|
| 476 |
|
| 477 |
### 6.5 Recursive Morpheme Segmentation
|
| 478 |
|
|
@@ -480,26 +512,28 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 480 |
|
| 481 |
| Word | Suggested Split | Confidence | Stem |
|
| 482 |
|------|-----------------|------------|------|
|
| 483 |
-
|
|
| 484 |
-
|
|
| 485 |
-
|
|
| 486 |
-
|
|
| 487 |
-
|
|
| 488 |
-
|
|
| 489 |
-
|
|
| 490 |
-
|
|
| 491 |
-
|
|
| 492 |
-
|
|
| 493 |
-
|
|
| 494 |
-
|
|
| 495 |
-
|
|
| 496 |
-
|
|
| 497 |
-
|
|
| 498 |
|
| 499 |
### 6.6 Linguistic Interpretation
|
| 500 |
|
| 501 |
> **Automated Insight:**
|
| 502 |
-
The language
|
|
|
|
|
|
|
| 503 |
|
| 504 |
---
|
| 505 |
## 7. Summary & Recommendations
|
|
@@ -511,7 +545,7 @@ The language BAR appears to be more isolating or has a highly fixed vocabulary.
|
|
| 511 |
| Component | Recommended | Rationale |
|
| 512 |
|-----------|-------------|-----------|
|
| 513 |
| Tokenizer | **64k BPE** | Best compression (4.00x) |
|
| 514 |
-
| N-gram | **2-gram** | Lowest perplexity (
|
| 515 |
| Markov | **Context-4** | Highest predictability (97.8%) |
|
| 516 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 517 |
|
|
@@ -726,4 +760,4 @@ MIT License - Free for academic and commercial use.
|
|
| 726 |
---
|
| 727 |
*Generated by Wikilangs Models Pipeline*
|
| 728 |
|
| 729 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: bar
|
| 3 |
+
language_name: Bavarian
|
| 4 |
language_family: germanic_west_continental
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-germanic_west_continental
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 4.003
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.8432
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Bavarian - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bavarian** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 3.167x | 3.17 | 0.0430% | 1,042,115 |
|
| 94 |
+
| **16k** | 3.477x | 3.48 | 0.0472% | 949,394 |
|
| 95 |
+
| **32k** | 3.753x | 3.75 | 0.0509% | 879,530 |
|
| 96 |
+
| **64k** | 4.003x 🏆 | 4.00 | 0.0543% | 824,531 |
|
| 97 |
|
| 98 |
### Tokenization Examples
|
| 99 |
|
| 100 |
Below are sample sentences tokenized with each vocabulary size:
|
| 101 |
|
| 102 |
+
**Sample 1:** `Forstern is a Gmoa im obaboarischn Landkroas Arrdeng. Im Netz Gemeinde Forstern ...`
|
| 103 |
|
| 104 |
| Vocab | Tokens | Count |
|
| 105 |
|-------|--------|-------|
|
| 106 |
+
| 8k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁oba boarischn ▁landkroas ▁ar ... (+19 more)` | 29 |
|
| 107 |
+
| 16k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+15 more)` | 25 |
|
| 108 |
+
| 32k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+13 more)` | 23 |
|
| 109 |
+
| 64k | `▁forst ern ▁is ▁a ▁gmoa ▁im ▁obaboarischn ▁landkroas ▁arrdeng . ... (+12 more)` | 22 |
|
| 110 |
|
| 111 |
+
**Sample 2:** `Marlboro County. Obgruafa am 22. Feba is a County in South Carolina in da USA. B...`
|
| 112 |
|
| 113 |
| Vocab | Tokens | Count |
|
| 114 |
|-------|--------|-------|
|
| 115 |
+
| 8k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 |
|
| 116 |
+
| 16k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 |
|
| 117 |
+
| 32k | `▁marl boro ▁county . ▁obgruafa ▁am ▁ 2 2 . ... (+17 more)` | 27 |
|
| 118 |
+
| 64k | `▁marlboro ▁county . ▁obgruafa ▁am ▁ 2 2 . ▁feba ... (+16 more)` | 26 |
|
| 119 |
|
| 120 |
+
**Sample 3:** `Hill County is a County in Montana in da USA. Beleg Im Netz in Montana`
|
| 121 |
|
| 122 |
| Vocab | Tokens | Count |
|
| 123 |
|-------|--------|-------|
|
| 124 |
+
| 8k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 |
|
| 125 |
+
| 16k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 |
|
| 126 |
+
| 32k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 |
|
| 127 |
+
| 64k | `▁hill ▁county ▁is ▁a ▁county ▁in ▁montana ▁in ▁da ▁usa ... (+6 more)` | 16 |
|
| 128 |
|
| 129 |
|
| 130 |
### Key Findings
|
| 131 |
|
| 132 |
+
- **Best Compression:** 64k achieves 4.003x compression
|
| 133 |
+
- **Lowest UNK Rate:** 8k with 0.0430% unknown tokens
|
| 134 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 135 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 136 |
|
|
|
|
| 147 |
|
| 148 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 149 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 150 |
+
| **2-gram** | Word | 27,199 | 14.73 | 109,780 | 13.0% | 31.5% |
|
| 151 |
+
| **2-gram** | Subword | 361 🏆 | 8.50 | 7,796 | 60.7% | 98.3% |
|
| 152 |
+
| **3-gram** | Word | 40,782 | 15.32 | 128,747 | 12.7% | 26.6% |
|
| 153 |
+
| **3-gram** | Subword | 3,796 | 11.89 | 62,893 | 20.6% | 60.9% |
|
| 154 |
+
| **4-gram** | Word | 56,976 | 15.80 | 186,218 | 13.7% | 25.1% |
|
| 155 |
+
| **4-gram** | Subword | 27,410 | 14.74 | 362,482 | 9.1% | 28.4% |
|
| 156 |
+
| **5-gram** | Word | 38,882 | 15.25 | 130,277 | 15.7% | 28.0% |
|
| 157 |
+
| **5-gram** | Subword | 124,788 | 16.93 | 1,153,187 | 4.9% | 16.5% |
|
| 158 |
|
| 159 |
### Top 5 N-grams by Size
|
| 160 |
|
|
|
|
| 162 |
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
+
| 1 | `vo da` | 26,508 |
|
| 166 |
+
| 2 | `is a` | 22,819 |
|
| 167 |
+
| 3 | `in da` | 22,392 |
|
| 168 |
+
| 4 | `im netz` | 14,484 |
|
| 169 |
+
| 5 | `vo de` | 13,424 |
|
| 170 |
|
| 171 |
**3-grams (Word):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
+
| 1 | `beleg im netz` | 3,530 |
|
| 176 |
| 2 | `in da usa` | 3,478 |
|
| 177 |
| 3 | `da beziak hod` | 2,393 |
|
| 178 |
+
| 4 | `im netz in` | 2,005 |
|
| 179 |
+
| 5 | `sitz vo da` | 1,888 |
|
| 180 |
|
| 181 |
**4-grams (Word):**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
+
| 1 | `beleg im netz in` | 1,575 |
|
| 186 |
+
| 2 | `da sitz vo da` | 1,482 |
|
| 187 |
| 3 | `is a county in` | 1,429 |
|
| 188 |
| 4 | `in da usa da` | 1,407 |
|
| 189 |
| 5 | `a katastralgmoa in da` | 1,387 |
|
| 190 |
|
| 191 |
+
**5-grams (Word):**
|
| 192 |
+
|
| 193 |
+
| Rank | N-gram | Count |
|
| 194 |
+
|------|--------|-------|
|
| 195 |
+
| 1 | `flächn ausgwiesn gwesn ende woarn` | 1,385 |
|
| 196 |
+
| 2 | `hektar ois laundwiatschoftliche flächn gnutzt` | 1,385 |
|
| 197 |
+
| 3 | `forstwirtschaftli gnutzte flächn ausgwiesn gwesn` | 1,385 |
|
| 198 |
+
| 4 | `hektar sand ois forstwirtschaftli gnutzte` | 1,385 |
|
| 199 |
+
| 5 | `ois laundwiatschoftliche flächn gnutzt und` | 1,385 |
|
| 200 |
+
|
| 201 |
**2-grams (Subword):**
|
| 202 |
|
| 203 |
| Rank | N-gram | Count |
|
| 204 |
|------|--------|-------|
|
| 205 |
+
| 1 | `n _` | 701,951 |
|
| 206 |
+
| 2 | `a _` | 667,528 |
|
| 207 |
+
| 3 | `c h` | 636,525 |
|
| 208 |
+
| 4 | `_ d` | 557,323 |
|
| 209 |
+
| 5 | `e _` | 479,658 |
|
| 210 |
|
| 211 |
**3-grams (Subword):**
|
| 212 |
|
| 213 |
| Rank | N-gram | Count |
|
| 214 |
|------|--------|-------|
|
| 215 |
+
| 1 | `s c h` | 303,728 |
|
| 216 |
+
| 2 | `_ d e` | 253,515 |
|
| 217 |
+
| 3 | `_ d a` | 172,902 |
|
| 218 |
+
| 4 | `n d _` | 169,557 |
|
| 219 |
+
| 5 | `u n d` | 168,298 |
|
| 220 |
|
| 221 |
**4-grams (Subword):**
|
| 222 |
|
| 223 |
| Rank | N-gram | Count |
|
| 224 |
|------|--------|-------|
|
| 225 |
+
| 1 | `_ d a _` | 132,086 |
|
| 226 |
+
| 2 | `_ d e _` | 130,374 |
|
| 227 |
+
| 3 | `u n d _` | 127,939 |
|
| 228 |
+
| 4 | `_ u n d` | 119,950 |
|
| 229 |
+
| 5 | `i s c h` | 99,379 |
|
| 230 |
+
|
| 231 |
+
**5-grams (Subword):**
|
| 232 |
+
|
| 233 |
+
| Rank | N-gram | Count |
|
| 234 |
+
|------|--------|-------|
|
| 235 |
+
| 1 | `_ u n d _` | 118,720 |
|
| 236 |
+
| 2 | `_ v o _ d` | 44,559 |
|
| 237 |
+
| 3 | `_ i n _ d` | 37,539 |
|
| 238 |
+
| 4 | `i s c h e` | 33,643 |
|
| 239 |
+
| 5 | `_ d e s _` | 31,011 |
|
| 240 |
|
| 241 |
|
| 242 |
### Key Findings
|
| 243 |
|
| 244 |
+
- **Best Perplexity:** 2-gram (subword) with 361
|
| 245 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 246 |
+
- **Coverage:** Top-1000 patterns cover ~17% of corpus
|
| 247 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 248 |
|
| 249 |
---
|
|
|
|
| 259 |
|
| 260 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 261 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 262 |
+
| **1** | Word | 0.7076 | 1.633 | 5.17 | 567,851 | 29.2% |
|
| 263 |
+
| **1** | Subword | 0.9427 | 1.922 | 6.61 | 3,387 | 5.7% |
|
| 264 |
+
| **2** | Word | 0.2111 | 1.158 | 1.52 | 2,930,161 | 78.9% |
|
| 265 |
+
| **2** | Subword | 0.9146 | 1.885 | 5.83 | 22,370 | 8.5% |
|
| 266 |
+
| **3** | Word | 0.0663 | 1.047 | 1.11 | 4,443,260 | 93.4% |
|
| 267 |
+
| **3** | Subword | 0.8673 | 1.824 | 4.66 | 130,496 | 13.3% |
|
| 268 |
+
| **4** | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,937,652 | 97.8% |
|
| 269 |
+
| **4** | Subword | 0.7772 | 1.714 | 3.53 | 608,299 | 22.3% |
|
| 270 |
|
| 271 |
### Generated Text Samples (Word-based)
|
| 272 |
|
|
|
|
| 274 |
|
| 275 |
**Context Size 1:**
|
| 276 |
|
| 277 |
+
1. `de gepidn und bbö 178 bukit tinggi 72 canon triplex a 7 hz ws touro college`
|
| 278 |
+
2. `da effentlichn stroßn am 9 verletzter blick af de gebietskeapaschoftn in bayern gwen dem meearesspia...`
|
| 279 |
+
3. `und alfonso cuarón timothy j nö öbb infra öbb pv tullnerfelder bahn rengschbuach grünthal geografie ...`
|
| 280 |
|
| 281 |
**Context Size 2:**
|
| 282 |
|
| 283 |
+
1. `vo da blaa oim aussa und entschdengan seine wichdigstn litararischn weak da voda vo da gmoa kirchham`
|
| 284 |
+
2. `is a kuaza a1 kuaza mit klima b launga und zwoa enklkinda da hoeneß uli z bad`
|
| 285 |
+
3. `in da katastralgmoa dobranberg zsammgrechnt 84 bauflächn mit 44 633 m und 58 gärten auf 135 526`
|
| 286 |
|
| 287 |
**Context Size 3:**
|
| 288 |
|
| 289 |
+
1. `in da usa beleg im netz in virginia`
|
| 290 |
+
2. `beleg im netz in missouri`
|
| 291 |
+
3. `da beziak hod 39 451 eihwohna da sitz vo da vawoitung is leoti da beziak hod 12 786`
|
| 292 |
|
| 293 |
**Context Size 4:**
|
| 294 |
|
| 295 |
+
1. `beleg im netz in nebraska`
|
| 296 |
+
2. `da sitz vo da kroasvawoitung vo oanign landkroas liegt außahoib vom landkroas oft in da namasgleichn...`
|
| 297 |
+
3. `is a county in wisconsin in da usa beleg im netz in der emilia romagna des europapreises`
|
| 298 |
|
| 299 |
|
| 300 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 303 |
|
| 304 |
**Context Size 1:**
|
| 305 |
|
| 306 |
+
1. `_w.adaiwenieurio`
|
| 307 |
+
2. `a_lidovicröniser`
|
| 308 |
+
3. `e_hmbrkum_runís_`
|
| 309 |
|
| 310 |
**Context Size 2:**
|
| 311 |
|
| 312 |
+
1. `n_fc_rein_wieforo`
|
| 313 |
+
2. `a_da_oschofferkea`
|
| 314 |
+
3. `chr_koi'seybunds_`
|
| 315 |
|
| 316 |
**Context Size 3:**
|
| 317 |
|
| 318 |
+
1. `schburyan_no_san_d`
|
| 319 |
+
2. `_dem_scusdecentisc`
|
| 320 |
+
3. `_daument_in_und_zu`
|
| 321 |
|
| 322 |
**Context Size 4:**
|
| 323 |
|
| 324 |
+
1. `_da_letztn_de_ameri`
|
| 325 |
+
2. `_de_marekd_om_auf_1`
|
| 326 |
+
3. `und_botta_200+_maß_`
|
| 327 |
|
| 328 |
|
| 329 |
### Key Findings
|
| 330 |
|
| 331 |
- **Best Predictability:** Context-4 (word) with 97.8% predictability
|
| 332 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 333 |
+
- **Memory Trade-off:** Larger contexts require more storage (608,299 contexts)
|
| 334 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 335 |
|
| 336 |
---
|
|
|
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
+
| Vocabulary Size | 212,365 |
|
| 350 |
+
| Total Tokens | 5,339,853 |
|
| 351 |
+
| Mean Frequency | 25.14 |
|
| 352 |
| Median Frequency | 3 |
|
| 353 |
+
| Frequency Std Dev | 712.67 |
|
| 354 |
|
| 355 |
### Most Common Words
|
| 356 |
|
| 357 |
| Rank | Word | Frequency |
|
| 358 |
|------|------|-----------|
|
| 359 |
+
| 1 | de | 136,913 |
|
| 360 |
+
| 2 | da | 136,168 |
|
| 361 |
+
| 3 | und | 119,185 |
|
| 362 |
+
| 4 | in | 101,699 |
|
| 363 |
+
| 5 | a | 92,218 |
|
| 364 |
+
| 6 | vo | 91,584 |
|
| 365 |
+
| 7 | is | 86,664 |
|
| 366 |
+
| 8 | im | 70,677 |
|
| 367 |
+
| 9 | des | 33,854 |
|
| 368 |
+
| 10 | hod | 30,719 |
|
| 369 |
|
| 370 |
### Least Common Words (from vocabulary)
|
| 371 |
|
| 372 |
| Rank | Word | Frequency |
|
| 373 |
|------|------|-----------|
|
| 374 |
+
| 1 | mechanisches | 2 |
|
| 375 |
+
| 2 | stabilisierungssystem | 2 |
|
| 376 |
+
| 3 | voeffentlecht | 2 |
|
| 377 |
+
| 4 | innpuls | 2 |
|
| 378 |
+
| 5 | buagstej | 2 |
|
| 379 |
+
| 6 | nuwenburg | 2 |
|
| 380 |
+
| 7 | kulturweges | 2 |
|
| 381 |
+
| 8 | spessartprojektes | 2 |
|
| 382 |
+
| 9 | terrassnfermig | 2 |
|
| 383 |
+
| 10 | tuamhigi | 2 |
|
| 384 |
|
| 385 |
### Zipf's Law Analysis
|
| 386 |
|
| 387 |
| Metric | Value |
|
| 388 |
|--------|-------|
|
| 389 |
+
| Zipf Coefficient | 0.9730 |
|
| 390 |
+
| R² (Goodness of Fit) | 0.999444 |
|
| 391 |
| Adherence Quality | **excellent** |
|
| 392 |
|
| 393 |
### Coverage Analysis
|
|
|
|
| 403 |
|
| 404 |
- **Zipf Compliance:** R²=0.9994 indicates excellent adherence to Zipf's law
|
| 405 |
- **High Frequency Dominance:** Top 100 words cover 34.1% of corpus
|
| 406 |
+
- **Long Tail:** 202,365 words needed for remaining 23.3% coverage
|
| 407 |
|
| 408 |
---
|
| 409 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 419 |
|
| 420 |
### 5.1 Cross-Lingual Alignment
|
| 421 |
|
| 422 |
+

|
| 423 |
+
|
| 424 |
+

|
| 425 |
|
| 426 |
|
| 427 |
### 5.2 Model Comparison
|
| 428 |
|
| 429 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 430 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 431 |
+
| **mono_32d** | 32 | 0.8296 | 0.3402 | N/A | N/A |
|
| 432 |
+
| **mono_64d** | 64 | 0.8410 | 0.2581 | N/A | N/A |
|
| 433 |
+
| **mono_128d** | 128 | 0.8432 🏆 | 0.1737 | N/A | N/A |
|
| 434 |
+
| **aligned_32d** | 32 | 0.8296 | 0.3341 | 0.0920 | 0.3960 |
|
| 435 |
+
| **aligned_64d** | 64 | 0.8410 | 0.2543 | 0.1940 | 0.6020 |
|
| 436 |
+
| **aligned_128d** | 128 | 0.8432 | 0.1862 | 0.2860 | 0.6780 |
|
| 437 |
|
| 438 |
### Key Findings
|
| 439 |
|
| 440 |
+
- **Best Isotropy:** mono_128d with 0.8432 (more uniform distribution)
|
| 441 |
+
- **Semantic Density:** Average pairwise similarity of 0.2578. Lower values indicate better semantic separation.
|
| 442 |
+
- **Alignment Quality:** Aligned models achieve up to 28.6% R@1 in cross-lingual retrieval.
|
| 443 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 444 |
|
| 445 |
---
|
| 446 |
## 6. Morphological Analysis (Experimental)
|
| 447 |
|
|
|
|
|
|
|
| 448 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 449 |
|
| 450 |
### 6.1 Productivity & Complexity
|
| 451 |
|
| 452 |
| Metric | Value | Interpretation | Recommendation |
|
| 453 |
|--------|-------|----------------|----------------|
|
| 454 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 455 |
+
| Idiomaticity Gap | **0.694** | High formulaic/idiomatic content | - |
|
| 456 |
|
| 457 |
### 6.2 Affix Inventory (Productive Units)
|
| 458 |
|
|
|
|
| 461 |
#### Productive Prefixes
|
| 462 |
| Prefix | Examples |
|
| 463 |
|--------|----------|
|
| 464 |
+
| `-sc` | scharmbeck, schitznvaein, schiaf |
|
| 465 |
+
| `-sch` | scharmbeck, schitznvaein, schiaf |
|
| 466 |
|
| 467 |
#### Productive Suffixes
|
| 468 |
| Suffix | Examples |
|
| 469 |
|--------|----------|
|
| 470 |
+
| `-n` | şabran, unterwestern, weidesdn |
|
| 471 |
+
| `-en` | metallen, theologen, münzen |
|
| 472 |
+
| `-ng` | wondering, pisang, umwondlung |
|
| 473 |
+
| `-er` | gräberfelder, eichenauer, weydenhammer |
|
| 474 |
+
| `-ch` | hoierschbouch, weißabgleich, obergreutschach |
|
| 475 |
+
| `-ung` | umwondlung, auflösung, ausbroadung |
|
| 476 |
|
| 477 |
### 6.3 Bound Stems (Lexical Roots)
|
| 478 |
|
|
|
|
| 480 |
|
| 481 |
| Stem | Cohesion | Substitutability | Examples |
|
| 482 |
|------|----------|------------------|----------|
|
| 483 |
+
| `ster` | 2.00x | 209 contexts | aster, ester, stern |
|
| 484 |
+
| `schl` | 1.77x | 287 contexts | eschl, ischl, schlau |
|
| 485 |
+
| `schr` | 1.99x | 137 contexts | schrit, schrim, schreg |
|
| 486 |
+
| `gsch` | 1.77x | 181 contexts | gschai, gschdö, gschmo |
|
| 487 |
+
| `uach` | 1.99x | 99 contexts | buach, huach, suach |
|
| 488 |
+
| `itsc` | 2.19x | 64 contexts | gitsch, nitsch, kitsch |
|
| 489 |
+
| `icht` | 1.54x | 345 contexts | eicht, wicht, richt |
|
| 490 |
+
| `atio` | 2.26x | 45 contexts | ratio, natio, nation |
|
| 491 |
+
| `nisc` | 1.77x | 126 contexts | nisch, nischn, nischt |
|
| 492 |
+
| `reic` | 1.78x | 97 contexts | reich, reichd, reichl |
|
| 493 |
+
| `chof` | 2.07x | 50 contexts | schof, schoft, schofn |
|
| 494 |
+
| `tion` | 1.73x | 93 contexts | tione, aktion, notion |
|
| 495 |
|
| 496 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 497 |
|
|
|
|
| 499 |
|
| 500 |
| Prefix | Suffix | Frequency | Examples |
|
| 501 |
|--------|--------|-----------|----------|
|
| 502 |
+
| `-sc` | `-n` | 52 words | schbondan, schbüün |
|
| 503 |
+
| `-sc` | `-er` | 16 words | schatzgräber, schweinsteiger |
|
| 504 |
+
| `-sc` | `-en` | 13 words | schlampen, screven |
|
| 505 |
+
| `-sc` | `-ng` | 11 words | schädlbedeckung, schraubvabindung |
|
| 506 |
+
| `-sc` | `-ch` | 10 words | scharlach, schbruch |
|
| 507 |
+
| `-sc` | `-ung` | 4 words | schädlbedeckung, schraubvabindung |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
|
| 509 |
### 6.5 Recursive Morpheme Segmentation
|
| 510 |
|
|
|
|
| 512 |
|
| 513 |
| Word | Suggested Split | Confidence | Stem |
|
| 514 |
|------|-----------------|------------|------|
|
| 515 |
+
| schnitzen | **`sch-nitz-en`** | 6.0 | `nitz` |
|
| 516 |
+
| enthaltenen | **`enthalt-en-en`** | 6.0 | `enthalt` |
|
| 517 |
+
| schwensen | **`sch-wens-en`** | 6.0 | `wens` |
|
| 518 |
+
| herrnhausen | **`herrnhaus-en`** | 4.5 | `herrnhaus` |
|
| 519 |
+
| schrottenberg | **`sch-rottenberg`** | 4.5 | `rottenberg` |
|
| 520 |
+
| heaschafamülien | **`heaschafamüli-en`** | 4.5 | `heaschafamüli` |
|
| 521 |
+
| fawoitung | **`fawoit-ung`** | 4.5 | `fawoit` |
|
| 522 |
+
| regulären | **`regulär-en`** | 4.5 | `regulär` |
|
| 523 |
+
| leitmeritzer | **`leitmeritz-er`** | 4.5 | `leitmeritz` |
|
| 524 |
+
| jungfrauen | **`jungfrau-en`** | 4.5 | `jungfrau` |
|
| 525 |
+
| gespenster | **`gespenst-er`** | 4.5 | `gespenst` |
|
| 526 |
+
| dynastien | **`dynasti-en`** | 4.5 | `dynasti` |
|
| 527 |
+
| referenten | **`referent-en`** | 4.5 | `referent` |
|
| 528 |
+
| birkenhainer | **`birkenhain-er`** | 4.5 | `birkenhain` |
|
| 529 |
+
| rettersheimer | **`rettersheim-er`** | 4.5 | `rettersheim` |
|
| 530 |
|
| 531 |
### 6.6 Linguistic Interpretation
|
| 532 |
|
| 533 |
> **Automated Insight:**
|
| 534 |
+
The language Bavarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 535 |
+
|
| 536 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 537 |
|
| 538 |
---
|
| 539 |
## 7. Summary & Recommendations
|
|
|
|
| 545 |
| Component | Recommended | Rationale |
|
| 546 |
|-----------|-------------|-----------|
|
| 547 |
| Tokenizer | **64k BPE** | Best compression (4.00x) |
|
| 548 |
+
| N-gram | **2-gram** | Lowest perplexity (361) |
|
| 549 |
| Markov | **Context-4** | Highest predictability (97.8%) |
|
| 550 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 551 |
|
|
|
|
| 760 |
---
|
| 761 |
*Generated by Wikilangs Models Pipeline*
|
| 762 |
|
| 763 |
+
*Report Date: 2026-01-03 19:01:37*
|
models/embeddings/aligned/bar_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c79fb944f3fa50595a99205e89ad8c54fbd5f7e783aa26c55e502f8dabba673
|
| 3 |
+
size 1115259088
|
models/embeddings/aligned/bar_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bar", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bar_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ca1ac465d2dd95cc16e424657eeb7db432ce017a4efb8aee3caa34f9d6738a1
|
| 3 |
+
size 65664
|
models/embeddings/aligned/bar_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bar",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 33406,
|
| 7 |
+
"vocab_size": 87616
|
| 8 |
+
}
|
models/embeddings/aligned/bar_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74f527750a81c14b7fc7a4ab52eb0da0010ae6baf877edd04025787c141156ee
|
| 3 |
+
size 279970000
|
models/embeddings/aligned/bar_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bar", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bar_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:369418a6de4a717f66d0996acb8ace1729ec23b868acdd72d960a800c594e096
|
| 3 |
+
size 4224
|
models/embeddings/aligned/bar_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bar",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 33406,
|
| 7 |
+
"vocab_size": 87616
|
| 8 |
+
}
|
models/embeddings/aligned/bar_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b201763425b770374e8a2936ad509eba2f621f422ff3cd6bf0c510b5b885e7b
|
| 3 |
+
size 558399696
|
models/embeddings/aligned/bar_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "bar", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/bar_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a68ddbc4bb448934021ab28cd8694eff921ab731ed291b72068994be8e18873e
|
| 3 |
+
size 16512
|
models/embeddings/aligned/bar_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "bar",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 33406,
|
| 7 |
+
"vocab_size": 87616
|
| 8 |
+
}
|
models/embeddings/monolingual/bar_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c79fb944f3fa50595a99205e89ad8c54fbd5f7e783aa26c55e502f8dabba673
|
| 3 |
+
size 1115259088
|
models/embeddings/monolingual/bar_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 87616
|
| 15 |
}
|
models/embeddings/monolingual/bar_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74f527750a81c14b7fc7a4ab52eb0da0010ae6baf877edd04025787c141156ee
|
| 3 |
+
size 279970000
|
models/embeddings/monolingual/bar_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 87616
|
| 15 |
}
|
models/embeddings/monolingual/bar_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6b201763425b770374e8a2936ad509eba2f621f422ff3cd6bf0c510b5b885e7b
|
| 3 |
+
size 558399696
|
models/embeddings/monolingual/bar_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 87616
|
| 15 |
}
|
models/subword_markov/bar_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4bd0b0ccb19f4c10f880f9830d26c9bb55bab36620ceb93df4a84adf0ef78538
|
| 3 |
+
size 179926
|
models/subword_markov/bar_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 3387,
|
| 6 |
+
"total_transitions": 36651893
|
| 7 |
}
|
models/subword_markov/bar_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:721af06eca9bce8df729cc27b5e4d085cc14c4169ca0eaa6f9b413436eea4eaf
|
| 3 |
+
size 1045675
|
models/subword_markov/bar_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 22370,
|
| 6 |
+
"total_transitions": 36625125
|
| 7 |
}
|
models/subword_markov/bar_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:85e77908e5588d8b3e0a2130ebbb17e7e819804b700ceb76778e3903f0685824
|
| 3 |
+
size 4586691
|
models/subword_markov/bar_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 130496,
|
| 6 |
+
"total_transitions": 36598357
|
| 7 |
}
|
models/subword_markov/bar_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b9f51ef1a5af0b3612eee973a327c263d507f07902c3cd619a57ce26fd66a327
|
| 3 |
+
size 15805911
|
models/subword_markov/bar_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 608299,
|
| 6 |
+
"total_transitions": 36571589
|
| 7 |
}
|
models/subword_ngram/bar_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8c233f224c3b59afb31134f4f3a3a33b53e2254dab8f9f04674d0001616163fb
|
| 3 |
+
size 101595
|
models/subword_ngram/bar_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_ngrams": 7796,
|
| 6 |
+
"total_ngrams": 36651893
|
| 7 |
}
|
models/subword_ngram/bar_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:03ebf42dad05edb6845665a25f8715e78a80a513cc71353a9f9ed89896654aec
|
| 3 |
+
size 785124
|
models/subword_ngram/bar_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_ngrams": 62893,
|
| 6 |
+
"total_ngrams": 36625125
|
| 7 |
}
|
models/subword_ngram/bar_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f88d8053bb1dc1eb65008ebe3ab864b46b1fe54991cdd80b3695fa61f040eef0
|
| 3 |
+
size 4069838
|
models/subword_ngram/bar_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_ngrams": 362482,
|
| 6 |
+
"total_ngrams": 36598357
|
| 7 |
}
|
models/subword_ngram/bar_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:274cb447c4330f623de246bc0f11c662c8241a357318d29c6f56be180ea273cc
|
| 3 |
+
size 13233464
|
models/subword_ngram/bar_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "bar",
|
| 5 |
+
"unique_ngrams": 1153187,
|
| 6 |
+
"total_ngrams": 36571589
|
| 7 |
+
}
|
models/tokenizer/bar_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2f0ad7f979639aaa3a4633a0d1d32b9d0b65285c5e3dae9f5828891b7b85abc3
|
| 3 |
+
size 500310
|
models/tokenizer/bar_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bar_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:59601d467e0da057bd05285352a21240b3dd48ee44ebe4fc932982ddd5c7781d
|
| 3 |
+
size 773259
|
models/tokenizer/bar_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bar_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16a70b812f876c520eda78b3906c91ea9188e0b222d4aba9a98e76837fefb1b9
|
| 3 |
+
size 1335778
|
models/tokenizer/bar_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/bar_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5d0053358bd61bafa827c9c2e178c9ac1975691336ff4dccbb4b66fe579aa31b
|
| 3 |
+
size 368919
|
models/tokenizer/bar_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/bar_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7c18fc1c0e05d2e88fb6900bad3bce4ada4d362898d269a140e9797481a48870
|
| 3 |
+
size 3414560
|
models/vocabulary/bar_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "bar",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "bar",
|
| 3 |
+
"vocabulary_size": 212365,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.09984296589928575,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.31994929966653296,
|
| 9 |
+
"top_1000": 0.515994919433343,
|
| 10 |
+
"top_5000": 0.6560289595810551,
|
| 11 |
+
"top_10000": 0.7190537927378092
|
| 12 |
},
|
| 13 |
+
"hapax_count": 356362,
|
| 14 |
+
"hapax_ratio": 0.6265958887128622,
|
| 15 |
+
"total_documents": 26768
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/bar_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8eac799a7473b34a018b368f01554e07d06108fc7be5ce6633307e3764c1a01d
|
| 3 |
+
size 29188879
|
models/word_markov/bar_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 567851,
|
| 6 |
+
"total_transitions": 5669447
|
| 7 |
}
|
models/word_markov/bar_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:651b58594c9f64099a4dfebd6df479aecb9f4974a103f0f607946c935fa2562d
|
| 3 |
+
size 61707647
|
models/word_markov/bar_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bar",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "bar",
|
| 5 |
+
"unique_contexts": 2930161,
|
| 6 |
+
"total_transitions": 5642679
|
| 7 |
}
|