omarkamali commited on
Commit
4ac8c63
·
verified ·
1 Parent(s): a9b0579

Upload all models and assets for bar (latest)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +213 -179
  3. models/embeddings/aligned/bar_128d.bin +3 -0
  4. models/embeddings/aligned/bar_128d.meta.json +1 -0
  5. models/embeddings/aligned/bar_128d.projection.npy +3 -0
  6. models/embeddings/aligned/bar_128d_metadata.json +8 -0
  7. models/embeddings/aligned/bar_32d.bin +3 -0
  8. models/embeddings/aligned/bar_32d.meta.json +1 -0
  9. models/embeddings/aligned/bar_32d.projection.npy +3 -0
  10. models/embeddings/aligned/bar_32d_metadata.json +8 -0
  11. models/embeddings/aligned/bar_64d.bin +3 -0
  12. models/embeddings/aligned/bar_64d.meta.json +1 -0
  13. models/embeddings/aligned/bar_64d.projection.npy +3 -0
  14. models/embeddings/aligned/bar_64d_metadata.json +8 -0
  15. models/embeddings/monolingual/bar_128d.bin +2 -2
  16. models/embeddings/monolingual/bar_128d_metadata.json +1 -1
  17. models/embeddings/monolingual/bar_32d.bin +2 -2
  18. models/embeddings/monolingual/bar_32d_metadata.json +1 -1
  19. models/embeddings/monolingual/bar_64d.bin +2 -2
  20. models/embeddings/monolingual/bar_64d_metadata.json +1 -1
  21. models/subword_markov/bar_markov_ctx1_subword.parquet +2 -2
  22. models/subword_markov/bar_markov_ctx1_subword_metadata.json +2 -2
  23. models/subword_markov/bar_markov_ctx2_subword.parquet +2 -2
  24. models/subword_markov/bar_markov_ctx2_subword_metadata.json +2 -2
  25. models/subword_markov/bar_markov_ctx3_subword.parquet +2 -2
  26. models/subword_markov/bar_markov_ctx3_subword_metadata.json +2 -2
  27. models/subword_markov/bar_markov_ctx4_subword.parquet +2 -2
  28. models/subword_markov/bar_markov_ctx4_subword_metadata.json +2 -2
  29. models/subword_ngram/bar_2gram_subword.parquet +2 -2
  30. models/subword_ngram/bar_2gram_subword_metadata.json +2 -2
  31. models/subword_ngram/bar_3gram_subword.parquet +2 -2
  32. models/subword_ngram/bar_3gram_subword_metadata.json +2 -2
  33. models/subword_ngram/bar_4gram_subword.parquet +2 -2
  34. models/subword_ngram/bar_4gram_subword_metadata.json +2 -2
  35. models/subword_ngram/bar_5gram_subword.parquet +3 -0
  36. models/subword_ngram/bar_5gram_subword_metadata.json +7 -0
  37. models/tokenizer/bar_tokenizer_16k.model +2 -2
  38. models/tokenizer/bar_tokenizer_16k.vocab +0 -0
  39. models/tokenizer/bar_tokenizer_32k.model +2 -2
  40. models/tokenizer/bar_tokenizer_32k.vocab +0 -0
  41. models/tokenizer/bar_tokenizer_64k.model +2 -2
  42. models/tokenizer/bar_tokenizer_64k.vocab +0 -0
  43. models/tokenizer/bar_tokenizer_8k.model +2 -2
  44. models/tokenizer/bar_tokenizer_8k.vocab +0 -0
  45. models/vocabulary/bar_vocabulary.parquet +2 -2
  46. models/vocabulary/bar_vocabulary_metadata.json +9 -9
  47. models/word_markov/bar_markov_ctx1_word.parquet +2 -2
  48. models/word_markov/bar_markov_ctx1_word_metadata.json +2 -2
  49. models/word_markov/bar_markov_ctx2_word.parquet +2 -2
  50. models/word_markov/bar_markov_ctx2_word_metadata.json +2 -2
.gitattributes CHANGED
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
 
 
39
  visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
40
  visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
41
  visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
42
+ visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  language: bar
3
- language_name: BAR
4
  language_family: germanic_west_continental
5
  tags:
6
  - wikilangs
@@ -10,11 +10,21 @@ tags:
10
  - n-gram
11
  - markov
12
  - wikipedia
 
 
 
 
 
 
 
 
 
 
13
  - monolingual
14
  - family-germanic_west_continental
15
  license: mit
16
  library_name: wikilangs
17
- pipeline_tag: feature-extraction
18
  datasets:
19
  - omarkamali/wikipedia-monthly
20
  dataset_info:
@@ -23,20 +33,20 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.002
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.8442
30
  - name: vocabulary_size
31
  type: vocab
32
  value: 0
33
  generated: 2026-01-03
34
  ---
35
 
36
- # BAR - Wikilangs Models
37
  ## Comprehensive Research Report & Full Ablation Study
38
 
39
- This repository contains NLP models trained and evaluated by Wikilangs, specifically on **BAR** Wikipedia data.
40
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
41
 
42
  ## 📋 Repository Contents
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
- - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
  - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
@@ -80,47 +90,47 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
- | **8k** | 3.167x | 3.17 | 0.0429% | 1,049,729 |
84
- | **16k** | 3.475x | 3.48 | 0.0470% | 956,699 |
85
- | **32k** | 3.752x | 3.75 | 0.0508% | 885,998 |
86
- | **64k** | 4.002x 🏆 | 4.00 | 0.0542% | 830,614 |
87
 
88
  ### Tokenization Examples
89
 
90
  Below are sample sentences tokenized with each vocabulary size:
91
 
92
- **Sample 1:** `Buffalo County Obgruafa am 22. Feba is a County in Wisconsin in da USA. Beleg Im...`
93
 
94
  | Vocab | Tokens | Count |
95
  |-------|--------|-------|
96
- | 8k | `▁buffalocountyobgruafaam2 2 . febais ... (+13 more)` | 23 |
97
- | 16k | `▁buffalocountyobgruafaam2 2 . febais ... (+13 more)` | 23 |
98
- | 32k | `▁buffalocountyobgruafaam2 2 . febais ... (+13 more)` | 23 |
99
- | 64k | `▁buffalocountyobgruafaam2 2 . febais ... (+13 more)` | 23 |
100
 
101
- **Sample 2:** `Fauquier County. Obgruafa am 22. Feba is a County in Virginia in da USA. Beleg I...`
102
 
103
  | Vocab | Tokens | Count |
104
  |-------|--------|-------|
105
- | 8k | `▁f au qui er ▁county . ▁obgruafa ▁am ▁ 2 ... (+17 more)` | 27 |
106
- | 16k | `▁f au qui er ▁county . ▁obgruafa ▁am ▁ 2 ... (+17 more)` | 27 |
107
- | 32k | `▁fau qui er ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+16 more)` | 26 |
108
- | 64k | `▁fau qui er ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+16 more)` | 26 |
109
 
110
- **Sample 3:** `Carlow stähd fia: Carlow, Stod in Irland County Carlow, irische Grofschoft Carlo...`
111
 
112
  | Vocab | Tokens | Count |
113
  |-------|--------|-------|
114
- | 8k | `▁carl owstähdfia :carl ow ,stodin ... (+18 more)` | 28 |
115
- | 16k | `▁carl owstähdfia :carl ow ,stodin ... (+17 more)` | 27 |
116
- | 32k | `▁carl owstähdfia :carl ow ,stodin ... (+16 more)` | 26 |
117
- | 64k | `▁carlowstähdfia :carlow ,stod ▁in ▁irlandcounty ... (+10 more)` | 20 |
118
 
119
 
120
  ### Key Findings
121
 
122
- - **Best Compression:** 64k achieves 4.002x compression
123
- - **Lowest UNK Rate:** 8k with 0.0429% unknown tokens
124
  - **Trade-off:** Larger vocabularies improve compression but increase model size
125
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
126
 
@@ -137,12 +147,14 @@ Below are sample sentences tokenized with each vocabulary size:
137
 
138
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
139
  |--------|---------|------------|---------|----------------|------------------|-------------------|
140
- | **2-gram** | Word | 27,417 | 14.74 | 110,635 | 12.9% | 31.4% |
141
- | **2-gram** | Subword | 362 🏆 | 8.50 | 7,805 | 60.7% | 98.3% |
142
- | **3-gram** | Word | 41,058 | 15.33 | 129,534 | 12.6% | 26.5% |
143
- | **3-gram** | Subword | 3,802 | 11.89 | 63,080 | 20.6% | 60.8% |
144
- | **4-gram** | Word | 57,367 | 15.81 | 187,348 | 13.7% | 25.1% |
145
- | **4-gram** | Subword | 27,463 | 14.75 | 363,810 | 9.1% | 28.4% |
 
 
146
 
147
  ### Top 5 N-grams by Size
148
 
@@ -150,68 +162,88 @@ Below are sample sentences tokenized with each vocabulary size:
150
 
151
  | Rank | N-gram | Count |
152
  |------|--------|-------|
153
- | 1 | `vo da` | 26,665 |
154
- | 2 | `is a` | 22,998 |
155
- | 3 | `in da` | 22,567 |
156
- | 4 | `im netz` | 14,649 |
157
- | 5 | `vo de` | 13,503 |
158
 
159
  **3-grams (Word):**
160
 
161
  | Rank | N-gram | Count |
162
  |------|--------|-------|
163
- | 1 | `beleg im netz` | 3,527 |
164
  | 2 | `in da usa` | 3,478 |
165
  | 3 | `da beziak hod` | 2,393 |
166
- | 4 | `des is a` | 2,037 |
167
- | 5 | `im netz in` | 2,001 |
168
 
169
  **4-grams (Word):**
170
 
171
  | Rank | N-gram | Count |
172
  |------|--------|-------|
173
- | 1 | `beleg im netz in` | 1,573 |
174
- | 2 | `da sitz vo da` | 1,483 |
175
  | 3 | `is a county in` | 1,429 |
176
  | 4 | `in da usa da` | 1,407 |
177
  | 5 | `a katastralgmoa in da` | 1,387 |
178
 
 
 
 
 
 
 
 
 
 
 
179
  **2-grams (Subword):**
180
 
181
  | Rank | N-gram | Count |
182
  |------|--------|-------|
183
- | 1 | `n _` | 706,670 |
184
- | 2 | `a _` | 671,532 |
185
- | 3 | `c h` | 640,658 |
186
- | 4 | `_ d` | 560,830 |
187
- | 5 | `e _` | 482,452 |
188
 
189
  **3-grams (Subword):**
190
 
191
  | Rank | N-gram | Count |
192
  |------|--------|-------|
193
- | 1 | `s c h` | 305,657 |
194
- | 2 | `_ d e` | 255,292 |
195
- | 3 | `_ d a` | 174,094 |
196
- | 4 | `n d _` | 170,331 |
197
- | 5 | `d a _` | 169,070 |
198
 
199
  **4-grams (Subword):**
200
 
201
  | Rank | N-gram | Count |
202
  |------|--------|-------|
203
- | 1 | `_ d a _` | 133,118 |
204
- | 2 | `_ d e _` | 131,138 |
205
- | 3 | `u n d _` | 128,509 |
206
- | 4 | `_ u n d` | 120,455 |
207
- | 5 | `i s c h` | 100,072 |
 
 
 
 
 
 
 
 
 
 
208
 
209
 
210
  ### Key Findings
211
 
212
- - **Best Perplexity:** 2-gram (subword) with 362
213
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
214
- - **Coverage:** Top-1000 patterns cover ~28% of corpus
215
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
216
 
217
  ---
@@ -227,14 +259,14 @@ Below are sample sentences tokenized with each vocabulary size:
227
 
228
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
229
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
230
- | **1** | Word | 0.7091 | 1.635 | 5.19 | 569,846 | 29.1% |
231
- | **1** | Subword | 0.9426 | 1.922 | 6.61 | 3,388 | 5.7% |
232
- | **2** | Word | 0.2116 | 1.158 | 1.52 | 2,948,968 | 78.8% |
233
- | **2** | Subword | 0.9158 | 1.887 | 5.85 | 22,382 | 8.4% |
234
- | **3** | Word | 0.0664 | 1.047 | 1.12 | 4,475,523 | 93.4% |
235
- | **3** | Subword | 0.8683 | 1.826 | 4.67 | 130,801 | 13.2% |
236
- | **4** | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,973,907 | 97.8% |
237
- | **4** | Subword | 0.7777 | 1.714 | 3.53 | 610,360 | 22.2% |
238
 
239
  ### Generated Text Samples (Word-based)
240
 
@@ -242,27 +274,27 @@ Below are text samples generated from each word-based Markov chain model:
242
 
243
  **Context Size 1:**
244
 
245
- 1. `de flugsauria buidns de knaj oda negakuss domois ghairat hod direkt in den jüngling oder goar`
246
- 2. `da insl blaagad hom niks gwisst hod a öatschoft im netz hoamseitn vo mercia zrugg mei`
247
- 3. `und is er im neich augleande mocha oda z himinbjörg und ů und san letztle zua`
248
 
249
  **Context Size 2:**
250
 
251
- 1. `vo da vawoitung is in n gensatz za altn welt is a bleamalkiag ausgoat und in bemen`
252
- 2. `is a urtschoft und a jeda miassat eintritt brandln dann war des eagebnis vo de großn industriezentre...`
253
- 3. `in da usa on da anderson mesa in da langobardischn ehefrow vom kini ludwig i vo habsbuag`
254
 
255
  **Context Size 3:**
256
 
257
- 1. `in da usa beleg im netz in south carolina in da usa da beziak hod a fläche vo`
258
- 2. `beleg im netz eana hoamseitn eana myspace seitn eana facebook seitn volksmusik`
259
- 3. `da beziak hod a fläch vo 802 km af dena 49 970 eihwohna lem stond gmoana da powiat`
260
 
261
  **Context Size 4:**
262
 
263
- 1. `beleg im netz in der normandie im département seine maritime in da region normandie ea liegd im arro...`
264
- 2. `da sitz vo da vawoitung is lake city da beziak hod a flächn vo quadratkilometa dovo san 1 quadratkil...`
265
- 3. `is a county in virginia in da usa beleg im netz in missouri`
266
 
267
 
268
  ### Generated Text Samples (Subword-based)
@@ -271,34 +303,34 @@ Below are text samples generated from each subword-based Markov chain model:
271
 
272
  **Context Size 1:**
273
 
274
- 1. `_heerinznachrnea`
275
- 2. `an_knenant_getun`
276
- 3. `eichaumo_bh_ll,_`
277
 
278
  **Context Size 2:**
279
 
280
- 1. `n_de_autz)_val_(z`
281
- 2. `a_berseeka)_trejn`
282
- 3. `chulretiveicittbo`
283
 
284
  **Context Size 3:**
285
 
286
- 1. `sch-wei_in_de_im_o`
287
- 2. `_der_schaubind_so_`
288
- 3. `_da_hamation_phana`
289
 
290
  **Context Size 4:**
291
 
292
- 1. `_da_sicht_große_sog`
293
- 2. `_de_kompillatinen_t`
294
- 3. `und_europäischen_(a`
295
 
296
 
297
  ### Key Findings
298
 
299
  - **Best Predictability:** Context-4 (word) with 97.8% predictability
300
  - **Branching Factor:** Decreases with context size (more deterministic)
301
- - **Memory Trade-off:** Larger contexts require more storage (610,360 contexts)
302
  - **Recommendation:** Context-3 or Context-4 for text generation
303
 
304
  ---
@@ -314,48 +346,48 @@ Below are text samples generated from each subword-based Markov chain model:
314
 
315
  | Metric | Value |
316
  |--------|-------|
317
- | Vocabulary Size | 213,465 |
318
- | Total Tokens | 5,378,004 |
319
- | Mean Frequency | 25.19 |
320
  | Median Frequency | 3 |
321
- | Frequency Std Dev | 715.69 |
322
 
323
  ### Most Common Words
324
 
325
  | Rank | Word | Frequency |
326
  |------|------|-----------|
327
- | 1 | de | 137,737 |
328
- | 2 | da | 137,316 |
329
- | 3 | und | 119,692 |
330
- | 4 | in | 102,651 |
331
- | 5 | a | 92,739 |
332
- | 6 | vo | 92,570 |
333
- | 7 | is | 86,950 |
334
- | 8 | im | 71,173 |
335
- | 9 | des | 34,457 |
336
- | 10 | hod | 30,772 |
337
 
338
  ### Least Common Words (from vocabulary)
339
 
340
  | Rank | Word | Frequency |
341
  |------|------|-----------|
342
- | 1 | vorarlberga | 2 |
343
- | 2 | opfenbach | 2 |
344
- | 3 | raubibafäi | 2 |
345
- | 4 | marcianopel | 2 |
346
- | 5 | sachtler | 2 |
347
- | 6 | vitec | 2 |
348
- | 7 | videocom | 2 |
349
- | 8 | promovierten | 2 |
350
- | 9 | mechanisches | 2 |
351
- | 10 | stabilisierungssystem | 2 |
352
 
353
  ### Zipf's Law Analysis
354
 
355
  | Metric | Value |
356
  |--------|-------|
357
- | Zipf Coefficient | 0.9728 |
358
- | R² (Goodness of Fit) | 0.999432 |
359
  | Adherence Quality | **excellent** |
360
 
361
  ### Coverage Analysis
@@ -371,7 +403,7 @@ Below are text samples generated from each subword-based Markov chain model:
371
 
372
  - **Zipf Compliance:** R²=0.9994 indicates excellent adherence to Zipf's law
373
  - **High Frequency Dominance:** Top 100 words cover 34.1% of corpus
374
- - **Long Tail:** 203,465 words needed for remaining 23.3% coverage
375
 
376
  ---
377
  ## 5. Word Embeddings Evaluation
@@ -387,37 +419,40 @@ Below are text samples generated from each subword-based Markov chain model:
387
 
388
  ### 5.1 Cross-Lingual Alignment
389
 
390
- > *Note: Multilingual alignment visualization not available for this language.*
 
 
391
 
392
 
393
  ### 5.2 Model Comparison
394
 
395
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
396
  |-------|-----------|----------|------------------|---------------|----------------|
397
- | **mono_32d** | 32 | 0.8230 | 0.3300 | N/A | N/A |
398
- | **mono_64d** | 64 | 0.8442 🏆 | 0.2564 | N/A | N/A |
399
- | **mono_128d** | 128 | 0.8427 | 0.1773 | N/A | N/A |
 
 
 
400
 
401
  ### Key Findings
402
 
403
- - **Best Isotropy:** mono_64d with 0.8442 (more uniform distribution)
404
- - **Semantic Density:** Average pairwise similarity of 0.2546. Lower values indicate better semantic separation.
405
- - **Alignment Quality:** No aligned models evaluated in this run.
406
  - **Recommendation:** 128d aligned for best cross-lingual performance
407
 
408
  ---
409
  ## 6. Morphological Analysis (Experimental)
410
 
411
- > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
412
-
413
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
414
 
415
  ### 6.1 Productivity & Complexity
416
 
417
  | Metric | Value | Interpretation | Recommendation |
418
  |--------|-------|----------------|----------------|
419
- | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
420
- | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
421
 
422
  ### 6.2 Affix Inventory (Productive Units)
423
 
@@ -426,17 +461,18 @@ These are the most productive prefixes and suffixes identified by sampling the v
426
  #### Productive Prefixes
427
  | Prefix | Examples |
428
  |--------|----------|
429
- | `-be` | begleitendn, bewohnde, bewiabt |
430
- | `-sc` | schwingt, schienengebundenen, schwefelhölzern |
431
 
432
  #### Productive Suffixes
433
  | Suffix | Examples |
434
  |--------|----------|
435
- | `-n` | begleitendn, lesegerätn, clipperton |
436
- | `-en` | warmgemäßigten, alanen, aussen |
437
- | `-er` | puppentheater, kirchenmusiker, rothmüller |
438
- | `-ng` | hamhŭng, polung, urauffüahrung |
439
- | `-ch` | woifschbouch, mittlboarisch, meafoch |
 
440
 
441
  ### 6.3 Bound Stems (Lexical Roots)
442
 
@@ -444,18 +480,18 @@ Bound stems are high-frequency subword units that are semantically cohesive but
444
 
445
  | Stem | Cohesion | Substitutability | Examples |
446
  |------|----------|------------------|----------|
447
- | `icht` | 1.84x | 346 contexts | richt, eicht, dicht |
448
- | `schr` | 2.11x | 137 contexts | schrei, schräg, schrag |
449
- | `gsch` | 1.93x | 181 contexts | gschdö, gscher, gschod |
450
- | `schl` | 1.64x | 288 contexts | eschl, ischl, göschl |
451
- | `chte` | 1.70x | 217 contexts | åchte, echte, ochte |
452
- | `itsc` | 2.10x | 64 contexts | gitsch, kitsch, nitsch |
453
- | `chof` | 2.22x | 50 contexts | schof, schofn, schoft |
454
- | `tlic` | 1.76x | 137 contexts | etlich, etlichs, rötlich |
455
- | `atio` | 2.18x | 45 contexts | natio, ratio, nation |
456
- | `nisc` | 1.72x | 127 contexts | nisch, nischt, nischn |
457
- | `ichn` | 1.97x | 68 contexts | eichn, suichn, zoichn |
458
- | `uach` | 1.78x | 99 contexts | duach, buach, suach |
459
 
460
  ### 6.4 Affix Compatibility (Co-occurrence)
461
 
@@ -463,16 +499,12 @@ This table shows which prefixes and suffixes most frequently co-occur on the sam
463
 
464
  | Prefix | Suffix | Frequency | Examples |
465
  |--------|--------|-----------|----------|
466
- | `-sc` | `-n` | 53 words | schleierbaracken, schüidln |
467
- | `-be` | `-n` | 43 words | betroffanan, berichtigungen |
468
- | `-sc` | `-en` | 13 words | schleierbaracken, schnupfen |
469
- | `-be` | `-ng` | 13 words | bevejkarungsentwigglung, bereicherung |
470
- | `-sc` | `-er` | 13 words | schimpfkalender, schweller |
471
- | `-sc` | `-ch` | 10 words | schrambach, schpruch |
472
- | `-be` | `-en` | 9 words | berichtigungen, beten |
473
- | `-be` | `-ch` | 4 words | besuch, bessenbach |
474
- | `-be` | `-er` | 3 words | bettinger, berghammer |
475
- | `-sc` | `-ng` | 3 words | schoidruckpeglmindarung, schiefling |
476
 
477
  ### 6.5 Recursive Morpheme Segmentation
478
 
@@ -480,26 +512,28 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
480
 
481
  | Word | Suggested Split | Confidence | Stem |
482
  |------|-----------------|------------|------|
483
- | betreiber | **`be-treib-er`** | 6.0 | `treib` |
484
- | vorarlberger | **`vorarlberg-er`** | 4.5 | `vorarlberg` |
485
- | verkaufen | **`verkauf-en`** | 4.5 | `verkauf` |
486
- | grotesken | **`grotesk-en`** | 4.5 | `grotesk` |
487
- | schwabinger | **`sc-hwabi-ng-er`** | 4.5 | `hwabi` |
488
- | gsprochenen | **`gspro-ch-en-en`** | 4.5 | `gspro` |
489
- | waxenberger | **`waxenberg-er`** | 4.5 | `waxenberg` |
490
- | scheazhoft | **`sc-heazhoft`** | 4.5 | `heazhoft` |
491
- | gebildeten | **`gebildet-en`** | 4.5 | `gebildet` |
492
- | carstensen | **`carstens-en`** | 4.5 | `carstens` |
493
- | bewundern | **`be-wundern`** | 4.5 | `wundern` |
494
- | dornröschen | **`dornrös-ch-en`** | 3.0 | `dornrös` |
495
- | überetscher | **`überets-ch-er`** | 3.0 | `überets` |
496
- | betrieblich | **`be-triebli-ch`** | 3.0 | `triebli` |
497
- | umgebungen | **`umgebu-ng-en`** | 3.0 | `umgebu` |
498
 
499
  ### 6.6 Linguistic Interpretation
500
 
501
  > **Automated Insight:**
502
- The language BAR appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
 
 
503
 
504
  ---
505
  ## 7. Summary & Recommendations
@@ -511,7 +545,7 @@ The language BAR appears to be more isolating or has a highly fixed vocabulary.
511
  | Component | Recommended | Rationale |
512
  |-----------|-------------|-----------|
513
  | Tokenizer | **64k BPE** | Best compression (4.00x) |
514
- | N-gram | **2-gram** | Lowest perplexity (362) |
515
  | Markov | **Context-4** | Highest predictability (97.8%) |
516
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
517
 
@@ -726,4 +760,4 @@ MIT License - Free for academic and commercial use.
726
  ---
727
  *Generated by Wikilangs Models Pipeline*
728
 
729
- *Report Date: 2026-01-03 06:42:51*
 
1
  ---
2
  language: bar
3
+ language_name: Bavarian
4
  language_family: germanic_west_continental
5
  tags:
6
  - wikilangs
 
10
  - n-gram
11
  - markov
12
  - wikipedia
13
+ - feature-extraction
14
+ - sentence-similarity
15
+ - tokenization
16
+ - n-grams
17
+ - markov-chain
18
+ - text-mining
19
+ - fasttext
20
+ - babelvec
21
+ - vocabulous
22
+ - vocabulary
23
  - monolingual
24
  - family-germanic_west_continental
25
  license: mit
26
  library_name: wikilangs
27
+ pipeline_tag: text-generation
28
  datasets:
29
  - omarkamali/wikipedia-monthly
30
  dataset_info:
 
33
  metrics:
34
  - name: best_compression_ratio
35
  type: compression
36
+ value: 4.003
37
  - name: best_isotropy
38
  type: isotropy
39
+ value: 0.8432
40
  - name: vocabulary_size
41
  type: vocab
42
  value: 0
43
  generated: 2026-01-03
44
  ---
45
 
46
+ # Bavarian - Wikilangs Models
47
  ## Comprehensive Research Report & Full Ablation Study
48
 
49
+ This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Bavarian** Wikipedia data.
50
  We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
51
 
52
  ## 📋 Repository Contents
 
70
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
71
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
72
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
73
+ - [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
74
  - [7. Summary & Recommendations](#7-summary--recommendations)
75
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
76
  - [Visualizations Index](#visualizations-index)
 
90
 
91
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
92
  |------------|-------------|---------------|----------|--------------|
93
+ | **8k** | 3.167x | 3.17 | 0.0430% | 1,042,115 |
94
+ | **16k** | 3.477x | 3.48 | 0.0472% | 949,394 |
95
+ | **32k** | 3.753x | 3.75 | 0.0509% | 879,530 |
96
+ | **64k** | 4.003x 🏆 | 4.00 | 0.0543% | 824,531 |
97
 
98
  ### Tokenization Examples
99
 
100
  Below are sample sentences tokenized with each vocabulary size:
101
 
102
+ **Sample 1:** `Forstern is a Gmoa im obaboarischn Landkroas Arrdeng. Im Netz Gemeinde Forstern ...`
103
 
104
  | Vocab | Tokens | Count |
105
  |-------|--------|-------|
106
+ | 8k | `▁forst ern isagmoaim ▁oba boarischnlandkroasar ... (+19 more)` | 29 |
107
+ | 16k | `▁forst ern isagmoaim ▁obaboarischnlandkroasarrdeng . ... (+15 more)` | 25 |
108
+ | 32k | `▁forst ern isagmoaim ▁obaboarischnlandkroasarrdeng . ... (+13 more)` | 23 |
109
+ | 64k | `▁forst ern isagmoaim ▁obaboarischnlandkroasarrdeng . ... (+12 more)` | 22 |
110
 
111
+ **Sample 2:** `Marlboro County. Obgruafa am 22. Feba is a County in South Carolina in da USA. B...`
112
 
113
  | Vocab | Tokens | Count |
114
  |-------|--------|-------|
115
+ | 8k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 |
116
+ | 16k | `▁mar l boro ▁county . ▁obgruafa ▁am ▁ 2 2 ... (+18 more)` | 28 |
117
+ | 32k | `▁marl boro ▁county . ▁obgruafa ▁am ▁ 2 2 . ... (+17 more)` | 27 |
118
+ | 64k | `▁marlboro ▁county . ▁obgruafa ▁am ▁ 2 2 . ▁feba ... (+16 more)` | 26 |
119
 
120
+ **Sample 3:** `Hill County is a County in Montana in da USA. Beleg Im Netz in Montana`
121
 
122
  | Vocab | Tokens | Count |
123
  |-------|--------|-------|
124
+ | 8k | `▁hill ▁countyisa ▁countyin ▁montana ▁indausa ... (+6 more)` | 16 |
125
+ | 16k | `▁hill ▁countyisa ▁countyin ▁montana ▁indausa ... (+6 more)` | 16 |
126
+ | 32k | `▁hill ▁countyisa ▁countyin ▁montana ▁indausa ... (+6 more)` | 16 |
127
+ | 64k | `▁hillcountyis ▁acounty ▁inmontana ▁in ▁dausa ... (+6 more)` | 16 |
128
 
129
 
130
  ### Key Findings
131
 
132
+ - **Best Compression:** 64k achieves 4.003x compression
133
+ - **Lowest UNK Rate:** 8k with 0.0430% unknown tokens
134
  - **Trade-off:** Larger vocabularies improve compression but increase model size
135
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
136
 
 
147
 
148
  | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
149
  |--------|---------|------------|---------|----------------|------------------|-------------------|
150
+ | **2-gram** | Word | 27,199 | 14.73 | 109,780 | 13.0% | 31.5% |
151
+ | **2-gram** | Subword | 361 🏆 | 8.50 | 7,796 | 60.7% | 98.3% |
152
+ | **3-gram** | Word | 40,782 | 15.32 | 128,747 | 12.7% | 26.6% |
153
+ | **3-gram** | Subword | 3,796 | 11.89 | 62,893 | 20.6% | 60.9% |
154
+ | **4-gram** | Word | 56,976 | 15.80 | 186,218 | 13.7% | 25.1% |
155
+ | **4-gram** | Subword | 27,410 | 14.74 | 362,482 | 9.1% | 28.4% |
156
+ | **5-gram** | Word | 38,882 | 15.25 | 130,277 | 15.7% | 28.0% |
157
+ | **5-gram** | Subword | 124,788 | 16.93 | 1,153,187 | 4.9% | 16.5% |
158
 
159
  ### Top 5 N-grams by Size
160
 
 
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
+ | 1 | `vo da` | 26,508 |
166
+ | 2 | `is a` | 22,819 |
167
+ | 3 | `in da` | 22,392 |
168
+ | 4 | `im netz` | 14,484 |
169
+ | 5 | `vo de` | 13,424 |
170
 
171
  **3-grams (Word):**
172
 
173
  | Rank | N-gram | Count |
174
  |------|--------|-------|
175
+ | 1 | `beleg im netz` | 3,530 |
176
  | 2 | `in da usa` | 3,478 |
177
  | 3 | `da beziak hod` | 2,393 |
178
+ | 4 | `im netz in` | 2,005 |
179
+ | 5 | `sitz vo da` | 1,888 |
180
 
181
  **4-grams (Word):**
182
 
183
  | Rank | N-gram | Count |
184
  |------|--------|-------|
185
+ | 1 | `beleg im netz in` | 1,575 |
186
+ | 2 | `da sitz vo da` | 1,482 |
187
  | 3 | `is a county in` | 1,429 |
188
  | 4 | `in da usa da` | 1,407 |
189
  | 5 | `a katastralgmoa in da` | 1,387 |
190
 
191
+ **5-grams (Word):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `flächn ausgwiesn gwesn ende woarn` | 1,385 |
196
+ | 2 | `hektar ois laundwiatschoftliche flächn gnutzt` | 1,385 |
197
+ | 3 | `forstwirtschaftli gnutzte flächn ausgwiesn gwesn` | 1,385 |
198
+ | 4 | `hektar sand ois forstwirtschaftli gnutzte` | 1,385 |
199
+ | 5 | `ois laundwiatschoftliche flächn gnutzt und` | 1,385 |
200
+
201
  **2-grams (Subword):**
202
 
203
  | Rank | N-gram | Count |
204
  |------|--------|-------|
205
+ | 1 | `n _` | 701,951 |
206
+ | 2 | `a _` | 667,528 |
207
+ | 3 | `c h` | 636,525 |
208
+ | 4 | `_ d` | 557,323 |
209
+ | 5 | `e _` | 479,658 |
210
 
211
  **3-grams (Subword):**
212
 
213
  | Rank | N-gram | Count |
214
  |------|--------|-------|
215
+ | 1 | `s c h` | 303,728 |
216
+ | 2 | `_ d e` | 253,515 |
217
+ | 3 | `_ d a` | 172,902 |
218
+ | 4 | `n d _` | 169,557 |
219
+ | 5 | `u n d` | 168,298 |
220
 
221
  **4-grams (Subword):**
222
 
223
  | Rank | N-gram | Count |
224
  |------|--------|-------|
225
+ | 1 | `_ d a _` | 132,086 |
226
+ | 2 | `_ d e _` | 130,374 |
227
+ | 3 | `u n d _` | 127,939 |
228
+ | 4 | `_ u n d` | 119,950 |
229
+ | 5 | `i s c h` | 99,379 |
230
+
231
+ **5-grams (Subword):**
232
+
233
+ | Rank | N-gram | Count |
234
+ |------|--------|-------|
235
+ | 1 | `_ u n d _` | 118,720 |
236
+ | 2 | `_ v o _ d` | 44,559 |
237
+ | 3 | `_ i n _ d` | 37,539 |
238
+ | 4 | `i s c h e` | 33,643 |
239
+ | 5 | `_ d e s _` | 31,011 |
240
 
241
 
242
  ### Key Findings
243
 
244
+ - **Best Perplexity:** 2-gram (subword) with 361
245
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
246
+ - **Coverage:** Top-1000 patterns cover ~17% of corpus
247
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
248
 
249
  ---
 
259
 
260
  | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
261
  |---------|---------|-------------|------------|------------------|-----------------|----------------|
262
+ | **1** | Word | 0.7076 | 1.633 | 5.17 | 567,851 | 29.2% |
263
+ | **1** | Subword | 0.9427 | 1.922 | 6.61 | 3,387 | 5.7% |
264
+ | **2** | Word | 0.2111 | 1.158 | 1.52 | 2,930,161 | 78.9% |
265
+ | **2** | Subword | 0.9146 | 1.885 | 5.83 | 22,370 | 8.5% |
266
+ | **3** | Word | 0.0663 | 1.047 | 1.11 | 4,443,260 | 93.4% |
267
+ | **3** | Subword | 0.8673 | 1.824 | 4.66 | 130,496 | 13.3% |
268
+ | **4** | Word | 0.0224 🏆 | 1.016 | 1.04 | 4,937,652 | 97.8% |
269
+ | **4** | Subword | 0.7772 | 1.714 | 3.53 | 608,299 | 22.3% |
270
 
271
  ### Generated Text Samples (Word-based)
272
 
 
274
 
275
  **Context Size 1:**
276
 
277
+ 1. `de gepidn und bbö 178 bukit tinggi 72 canon triplex a 7 hz ws touro college`
278
+ 2. `da effentlichn stroßn am 9 verletzter blick af de gebietskeapaschoftn in bayern gwen dem meearesspia...`
279
+ 3. `und alfonso cuarón timothy j öbb infra öbb pv tullnerfelder bahn rengschbuach grünthal geografie ...`
280
 
281
  **Context Size 2:**
282
 
283
+ 1. `vo da blaa oim aussa und entschdengan seine wichdigstn litararischn weak da voda vo da gmoa kirchham`
284
+ 2. `is a kuaza a1 kuaza mit klima b launga und zwoa enklkinda da hoeneß uli z bad`
285
+ 3. `in da katastralgmoa dobranberg zsammgrechnt 84 bauflächn mit 44 633 m und 58 gärten auf 135 526`
286
 
287
  **Context Size 3:**
288
 
289
+ 1. `in da usa beleg im netz in virginia`
290
+ 2. `beleg im netz in missouri`
291
+ 3. `da beziak hod 39 451 eihwohna da sitz vo da vawoitung is leoti da beziak hod 12 786`
292
 
293
  **Context Size 4:**
294
 
295
+ 1. `beleg im netz in nebraska`
296
+ 2. `da sitz vo da kroasvawoitung vo oanign landkroas liegt außahoib vom landkroas oft in da namasgleichn...`
297
+ 3. `is a county in wisconsin in da usa beleg im netz in der emilia romagna des europapreises`
298
 
299
 
300
  ### Generated Text Samples (Subword-based)
 
303
 
304
  **Context Size 1:**
305
 
306
+ 1. `_w.adaiwenieurio`
307
+ 2. `a_lidovicröniser`
308
+ 3. `e_hmbrkum_runís_`
309
 
310
  **Context Size 2:**
311
 
312
+ 1. `n_fc_rein_wieforo`
313
+ 2. `a_da_oschofferkea`
314
+ 3. `chr_koi'seybunds_`
315
 
316
  **Context Size 3:**
317
 
318
+ 1. `schburyan_no_san_d`
319
+ 2. `_dem_scusdecentisc`
320
+ 3. `_daument_in_und_zu`
321
 
322
  **Context Size 4:**
323
 
324
+ 1. `_da_letztn_de_ameri`
325
+ 2. `_de_marekd_om_auf_1`
326
+ 3. `und_botta_200+_maß_`
327
 
328
 
329
  ### Key Findings
330
 
331
  - **Best Predictability:** Context-4 (word) with 97.8% predictability
332
  - **Branching Factor:** Decreases with context size (more deterministic)
333
+ - **Memory Trade-off:** Larger contexts require more storage (608,299 contexts)
334
  - **Recommendation:** Context-3 or Context-4 for text generation
335
 
336
  ---
 
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Vocabulary Size | 212,365 |
350
+ | Total Tokens | 5,339,853 |
351
+ | Mean Frequency | 25.14 |
352
  | Median Frequency | 3 |
353
+ | Frequency Std Dev | 712.67 |
354
 
355
  ### Most Common Words
356
 
357
  | Rank | Word | Frequency |
358
  |------|------|-----------|
359
+ | 1 | de | 136,913 |
360
+ | 2 | da | 136,168 |
361
+ | 3 | und | 119,185 |
362
+ | 4 | in | 101,699 |
363
+ | 5 | a | 92,218 |
364
+ | 6 | vo | 91,584 |
365
+ | 7 | is | 86,664 |
366
+ | 8 | im | 70,677 |
367
+ | 9 | des | 33,854 |
368
+ | 10 | hod | 30,719 |
369
 
370
  ### Least Common Words (from vocabulary)
371
 
372
  | Rank | Word | Frequency |
373
  |------|------|-----------|
374
+ | 1 | mechanisches | 2 |
375
+ | 2 | stabilisierungssystem | 2 |
376
+ | 3 | voeffentlecht | 2 |
377
+ | 4 | innpuls | 2 |
378
+ | 5 | buagstej | 2 |
379
+ | 6 | nuwenburg | 2 |
380
+ | 7 | kulturweges | 2 |
381
+ | 8 | spessartprojektes | 2 |
382
+ | 9 | terrassnfermig | 2 |
383
+ | 10 | tuamhigi | 2 |
384
 
385
  ### Zipf's Law Analysis
386
 
387
  | Metric | Value |
388
  |--------|-------|
389
+ | Zipf Coefficient | 0.9730 |
390
+ | R² (Goodness of Fit) | 0.999444 |
391
  | Adherence Quality | **excellent** |
392
 
393
  ### Coverage Analysis
 
403
 
404
  - **Zipf Compliance:** R²=0.9994 indicates excellent adherence to Zipf's law
405
  - **High Frequency Dominance:** Top 100 words cover 34.1% of corpus
406
+ - **Long Tail:** 202,365 words needed for remaining 23.3% coverage
407
 
408
  ---
409
  ## 5. Word Embeddings Evaluation
 
419
 
420
  ### 5.1 Cross-Lingual Alignment
421
 
422
+ ![Alignment Quality](visualizations/embedding_alignment_quality.png)
423
+
424
+ ![Multilingual t-SNE](visualizations/embedding_tsne_multilingual.png)
425
 
426
 
427
  ### 5.2 Model Comparison
428
 
429
  | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
430
  |-------|-----------|----------|------------------|---------------|----------------|
431
+ | **mono_32d** | 32 | 0.8296 | 0.3402 | N/A | N/A |
432
+ | **mono_64d** | 64 | 0.8410 | 0.2581 | N/A | N/A |
433
+ | **mono_128d** | 128 | 0.8432 🏆 | 0.1737 | N/A | N/A |
434
+ | **aligned_32d** | 32 | 0.8296 | 0.3341 | 0.0920 | 0.3960 |
435
+ | **aligned_64d** | 64 | 0.8410 | 0.2543 | 0.1940 | 0.6020 |
436
+ | **aligned_128d** | 128 | 0.8432 | 0.1862 | 0.2860 | 0.6780 |
437
 
438
  ### Key Findings
439
 
440
+ - **Best Isotropy:** mono_128d with 0.8432 (more uniform distribution)
441
+ - **Semantic Density:** Average pairwise similarity of 0.2578. Lower values indicate better semantic separation.
442
+ - **Alignment Quality:** Aligned models achieve up to 28.6% R@1 in cross-lingual retrieval.
443
  - **Recommendation:** 128d aligned for best cross-lingual performance
444
 
445
  ---
446
  ## 6. Morphological Analysis (Experimental)
447
 
 
 
448
  This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
449
 
450
  ### 6.1 Productivity & Complexity
451
 
452
  | Metric | Value | Interpretation | Recommendation |
453
  |--------|-------|----------------|----------------|
454
+ | Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
455
+ | Idiomaticity Gap | **0.694** | High formulaic/idiomatic content | - |
456
 
457
  ### 6.2 Affix Inventory (Productive Units)
458
 
 
461
  #### Productive Prefixes
462
  | Prefix | Examples |
463
  |--------|----------|
464
+ | `-sc` | scharmbeck, schitznvaein, schiaf |
465
+ | `-sch` | scharmbeck, schitznvaein, schiaf |
466
 
467
  #### Productive Suffixes
468
  | Suffix | Examples |
469
  |--------|----------|
470
+ | `-n` | şabran, unterwestern, weidesdn |
471
+ | `-en` | metallen, theologen, münzen |
472
+ | `-ng` | wondering, pisang, umwondlung |
473
+ | `-er` | gräberfelder, eichenauer, weydenhammer |
474
+ | `-ch` | hoierschbouch, weißabgleich, obergreutschach |
475
+ | `-ung` | umwondlung, auflösung, ausbroadung |
476
 
477
  ### 6.3 Bound Stems (Lexical Roots)
478
 
 
480
 
481
  | Stem | Cohesion | Substitutability | Examples |
482
  |------|----------|------------------|----------|
483
+ | `ster` | 2.00x | 209 contexts | aster, ester, stern |
484
+ | `schl` | 1.77x | 287 contexts | eschl, ischl, schlau |
485
+ | `schr` | 1.99x | 137 contexts | schrit, schrim, schreg |
486
+ | `gsch` | 1.77x | 181 contexts | gschai, gschdö, gschmo |
487
+ | `uach` | 1.99x | 99 contexts | buach, huach, suach |
488
+ | `itsc` | 2.19x | 64 contexts | gitsch, nitsch, kitsch |
489
+ | `icht` | 1.54x | 345 contexts | eicht, wicht, richt |
490
+ | `atio` | 2.26x | 45 contexts | ratio, natio, nation |
491
+ | `nisc` | 1.77x | 126 contexts | nisch, nischn, nischt |
492
+ | `reic` | 1.78x | 97 contexts | reich, reichd, reichl |
493
+ | `chof` | 2.07x | 50 contexts | schof, schoft, schofn |
494
+ | `tion` | 1.73x | 93 contexts | tione, aktion, notion |
495
 
496
  ### 6.4 Affix Compatibility (Co-occurrence)
497
 
 
499
 
500
  | Prefix | Suffix | Frequency | Examples |
501
  |--------|--------|-----------|----------|
502
+ | `-sc` | `-n` | 52 words | schbondan, schbüün |
503
+ | `-sc` | `-er` | 16 words | schatzgräber, schweinsteiger |
504
+ | `-sc` | `-en` | 13 words | schlampen, screven |
505
+ | `-sc` | `-ng` | 11 words | schädlbedeckung, schraubvabindung |
506
+ | `-sc` | `-ch` | 10 words | scharlach, schbruch |
507
+ | `-sc` | `-ung` | 4 words | schädlbedeckung, schraubvabindung |
 
 
 
 
508
 
509
  ### 6.5 Recursive Morpheme Segmentation
510
 
 
512
 
513
  | Word | Suggested Split | Confidence | Stem |
514
  |------|-----------------|------------|------|
515
+ | schnitzen | **`sch-nitz-en`** | 6.0 | `nitz` |
516
+ | enthaltenen | **`enthalt-en-en`** | 6.0 | `enthalt` |
517
+ | schwensen | **`sch-wens-en`** | 6.0 | `wens` |
518
+ | herrnhausen | **`herrnhaus-en`** | 4.5 | `herrnhaus` |
519
+ | schrottenberg | **`sch-rottenberg`** | 4.5 | `rottenberg` |
520
+ | heaschafamülien | **`heaschafamüli-en`** | 4.5 | `heaschafamüli` |
521
+ | fawoitung | **`fawoit-ung`** | 4.5 | `fawoit` |
522
+ | regulären | **`regulär-en`** | 4.5 | `regulär` |
523
+ | leitmeritzer | **`leitmeritz-er`** | 4.5 | `leitmeritz` |
524
+ | jungfrauen | **`jungfrau-en`** | 4.5 | `jungfrau` |
525
+ | gespenster | **`gespenst-er`** | 4.5 | `gespenst` |
526
+ | dynastien | **`dynasti-en`** | 4.5 | `dynasti` |
527
+ | referenten | **`referent-en`** | 4.5 | `referent` |
528
+ | birkenhainer | **`birkenhain-er`** | 4.5 | `birkenhain` |
529
+ | rettersheimer | **`rettersheim-er`** | 4.5 | `rettersheim` |
530
 
531
  ### 6.6 Linguistic Interpretation
532
 
533
  > **Automated Insight:**
534
+ The language Bavarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
535
+
536
+ > **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
537
 
538
  ---
539
  ## 7. Summary & Recommendations
 
545
  | Component | Recommended | Rationale |
546
  |-----------|-------------|-----------|
547
  | Tokenizer | **64k BPE** | Best compression (4.00x) |
548
+ | N-gram | **2-gram** | Lowest perplexity (361) |
549
  | Markov | **Context-4** | Highest predictability (97.8%) |
550
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
551
 
 
760
  ---
761
  *Generated by Wikilangs Models Pipeline*
762
 
763
+ *Report Date: 2026-01-03 19:01:37*
models/embeddings/aligned/bar_128d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c79fb944f3fa50595a99205e89ad8c54fbd5f7e783aa26c55e502f8dabba673
3
+ size 1115259088
models/embeddings/aligned/bar_128d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "bar", "dim": 128, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/bar_128d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ca1ac465d2dd95cc16e424657eeb7db432ce017a4efb8aee3caa34f9d6738a1
3
+ size 65664
models/embeddings/aligned/bar_128d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "bar",
3
+ "dimension": 128,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 33406,
7
+ "vocab_size": 87616
8
+ }
models/embeddings/aligned/bar_32d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f527750a81c14b7fc7a4ab52eb0da0010ae6baf877edd04025787c141156ee
3
+ size 279970000
models/embeddings/aligned/bar_32d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "bar", "dim": 32, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/bar_32d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:369418a6de4a717f66d0996acb8ace1729ec23b868acdd72d960a800c594e096
3
+ size 4224
models/embeddings/aligned/bar_32d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "bar",
3
+ "dimension": 32,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 33406,
7
+ "vocab_size": 87616
8
+ }
models/embeddings/aligned/bar_64d.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b201763425b770374e8a2936ad509eba2f621f422ff3cd6bf0c510b5b885e7b
3
+ size 558399696
models/embeddings/aligned/bar_64d.meta.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lang": "bar", "dim": 64, "max_seq_len": 512, "is_aligned": true}
models/embeddings/aligned/bar_64d.projection.npy ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a68ddbc4bb448934021ab28cd8694eff921ab731ed291b72068994be8e18873e
3
+ size 16512
models/embeddings/aligned/bar_64d_metadata.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "language": "bar",
3
+ "dimension": 64,
4
+ "version": "aligned",
5
+ "hub_language": "en",
6
+ "seed_vocab_size": 33406,
7
+ "vocab_size": 87616
8
+ }
models/embeddings/monolingual/bar_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6256ddf046563a10ad0e96ef58deffac4839b1eb48bc65facd0dd74ba05e830b
3
- size 1115788582
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c79fb944f3fa50595a99205e89ad8c54fbd5f7e783aa26c55e502f8dabba673
3
+ size 1115259088
models/embeddings/monolingual/bar_128d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
- "vocab_size": 88124
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 128
13
  },
14
+ "vocab_size": 87616
15
  }
models/embeddings/monolingual/bar_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc7a6c48e154f63a623a8376127a01b222af8bf2a04aba41f602a929eb6c27af
3
- size 280109350
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74f527750a81c14b7fc7a4ab52eb0da0010ae6baf877edd04025787c141156ee
3
+ size 279970000
models/embeddings/monolingual/bar_32d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
- "vocab_size": 88124
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 32
13
  },
14
+ "vocab_size": 87616
15
  }
models/embeddings/monolingual/bar_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9998545a04e63264d36cca0eb51c1e069804e9cdba44f02039cd26cd05531df8
3
- size 558669094
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b201763425b770374e8a2936ad509eba2f621f422ff3cd6bf0c510b5b885e7b
3
+ size 558399696
models/embeddings/monolingual/bar_64d_metadata.json CHANGED
@@ -11,5 +11,5 @@
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
- "vocab_size": 88124
15
  }
 
11
  "encoding_method": "rope",
12
  "dim": 64
13
  },
14
+ "vocab_size": 87616
15
  }
models/subword_markov/bar_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:60e6c3a72c3c4d893f6ddf06c56e1234d3475b1b1443e819143470ab5f1b4e23
3
- size 182402
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bd0b0ccb19f4c10f880f9830d26c9bb55bab36620ceb93df4a84adf0ef78538
3
+ size 179926
models/subword_markov/bar_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_contexts": 3388,
6
- "total_transitions": 36898936
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_contexts": 3387,
6
+ "total_transitions": 36651893
7
  }
models/subword_markov/bar_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dc48393a4abf97a7708eb8626bb77b238a51c44b6bba67b7e1d4fd0bd11ec189
3
- size 1029228
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:721af06eca9bce8df729cc27b5e4d085cc14c4169ca0eaa6f9b413436eea4eaf
3
+ size 1045675
models/subword_markov/bar_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_contexts": 22382,
6
- "total_transitions": 36872004
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_contexts": 22370,
6
+ "total_transitions": 36625125
7
  }
models/subword_markov/bar_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2791996798e11cff4740288bb4e88ef150e9193843760570285c334a6ad21342
3
- size 4585569
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85e77908e5588d8b3e0a2130ebbb17e7e819804b700ceb76778e3903f0685824
3
+ size 4586691
models/subword_markov/bar_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_contexts": 130801,
6
- "total_transitions": 36845072
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_contexts": 130496,
6
+ "total_transitions": 36598357
7
  }
models/subword_markov/bar_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:19edd5d2767e201a87efc206fec70368c6dc23b8ed658bbf39f26635b1f373d3
3
- size 15789022
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9f51ef1a5af0b3612eee973a327c263d507f07902c3cd619a57ce26fd66a327
3
+ size 15805911
models/subword_markov/bar_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_contexts": 610360,
6
- "total_transitions": 36818140
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_contexts": 608299,
6
+ "total_transitions": 36571589
7
  }
models/subword_ngram/bar_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e38e7d14a00c23438ba07cef06a0be700a6eaea54c9aa917c3319ce7eba165f
3
- size 102154
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c233f224c3b59afb31134f4f3a3a33b53e2254dab8f9f04674d0001616163fb
3
+ size 101595
models/subword_ngram/bar_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_ngrams": 7805,
6
- "total_ngrams": 36898936
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_ngrams": 7796,
6
+ "total_ngrams": 36651893
7
  }
models/subword_ngram/bar_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:ff09d3ef6e1cfa552449a8dedd31d9754c60b8a91db7126c3cc9c4c71957830a
3
- size 780954
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:03ebf42dad05edb6845665a25f8715e78a80a513cc71353a9f9ed89896654aec
3
+ size 785124
models/subword_ngram/bar_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_ngrams": 63080,
6
- "total_ngrams": 36872004
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_ngrams": 62893,
6
+ "total_ngrams": 36625125
7
  }
models/subword_ngram/bar_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:72f067181a08a87d97a0065d3a1bdaeb78404363053efae74d287fdc5e58187b
3
- size 4090739
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88d8053bb1dc1eb65008ebe3ab864b46b1fe54991cdd80b3695fa61f040eef0
3
+ size 4069838
models/subword_ngram/bar_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "bar",
5
- "unique_ngrams": 363810,
6
- "total_ngrams": 36845072
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "bar",
5
+ "unique_ngrams": 362482,
6
+ "total_ngrams": 36598357
7
  }
models/subword_ngram/bar_5gram_subword.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:274cb447c4330f623de246bc0f11c662c8241a357318d29c6f56be180ea273cc
3
+ size 13233464
models/subword_ngram/bar_5gram_subword_metadata.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "n": 5,
3
+ "variant": "subword",
4
+ "language": "bar",
5
+ "unique_ngrams": 1153187,
6
+ "total_ngrams": 36571589
7
+ }
models/tokenizer/bar_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:70ddb2da3b8a1d35b41491bf8a0ea06f6e0357f42e81f619258dafcbc3567d87
3
- size 500516
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f0ad7f979639aaa3a4633a0d1d32b9d0b65285c5e3dae9f5828891b7b85abc3
3
+ size 500310
models/tokenizer/bar_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bar_tokenizer_32k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f7c6a1964c1d0a5e0f3f657f5fe39d0fc4524fef607b13be5a9d6be1c48e71b2
3
- size 773157
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59601d467e0da057bd05285352a21240b3dd48ee44ebe4fc932982ddd5c7781d
3
+ size 773259
models/tokenizer/bar_tokenizer_32k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bar_tokenizer_64k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a6c179e6feecfed4b2ee3d6bb1547e591a0fdece5e1f9b05bc8dc198ae6ac1b
3
- size 1335748
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16a70b812f876c520eda78b3906c91ea9188e0b222d4aba9a98e76837fefb1b9
3
+ size 1335778
models/tokenizer/bar_tokenizer_64k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/bar_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:77089651ccfa512d13316ef10f75bd2ec3ead99b2fce243a47c46f50b404db47
3
- size 368818
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d0053358bd61bafa827c9c2e178c9ac1975691336ff4dccbb4b66fe579aa31b
3
+ size 368919
models/tokenizer/bar_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/bar_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d7edcd6cf37858bad1ad7f0f51a2247a6bb728fc9c8b48ffb32bfd46cfe4ee3f
3
- size 3431123
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c18fc1c0e05d2e88fb6900bad3bce4ada4d362898d269a140e9797481a48870
3
+ size 3414560
models/vocabulary/bar_vocabulary_metadata.json CHANGED
@@ -1,17 +1,17 @@
1
  {
2
  "language": "bar",
3
- "vocabulary_size": 213465,
4
  "variant": "full",
5
  "statistics": {
6
- "type_token_ratio": 0.0995109201675251,
7
  "coverage": {
8
- "top_100": 0.3198175845558876,
9
- "top_1000": 0.5158986689356716,
10
- "top_5000": 0.6559721791165527,
11
- "top_10000": 0.7190383696641477
12
  },
13
- "hapax_count": 357256,
14
- "hapax_ratio": 0.6259731112049496,
15
- "total_documents": 26932
16
  }
17
  }
 
1
  {
2
  "language": "bar",
3
+ "vocabulary_size": 212365,
4
  "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.09984296589928575,
7
  "coverage": {
8
+ "top_100": 0.31994929966653296,
9
+ "top_1000": 0.515994919433343,
10
+ "top_5000": 0.6560289595810551,
11
+ "top_10000": 0.7190537927378092
12
  },
13
+ "hapax_count": 356362,
14
+ "hapax_ratio": 0.6265958887128622,
15
+ "total_documents": 26768
16
  }
17
  }
models/word_markov/bar_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:51608c66d7996b04b88bec1cf78dd596b044f1df0c12652fcb092ce187c00456
3
- size 29383606
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8eac799a7473b34a018b368f01554e07d06108fc7be5ce6633307e3764c1a01d
3
+ size 29188879
models/word_markov/bar_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "bar",
5
- "unique_contexts": 569846,
6
- "total_transitions": 5708328
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "bar",
5
+ "unique_contexts": 567851,
6
+ "total_transitions": 5669447
7
  }
models/word_markov/bar_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7fa0c4b83dfa569be9152f9aa90cd11f1e0d964b9f72a6e43fd8f8c02a1c4229
3
- size 62105262
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:651b58594c9f64099a4dfebd6df479aecb9f4974a103f0f607946c935fa2562d
3
+ size 61707647
models/word_markov/bar_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "bar",
5
- "unique_contexts": 2948968,
6
- "total_transitions": 5681396
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "bar",
5
+ "unique_contexts": 2930161,
6
+ "total_transitions": 5642679
7
  }