Upload all models and assets for cdo (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +164 -129
- models/embeddings/aligned/cdo_128d.bin +3 -0
- models/embeddings/aligned/cdo_128d.meta.json +1 -0
- models/embeddings/aligned/cdo_128d.projection.npy +3 -0
- models/embeddings/aligned/cdo_128d_metadata.json +8 -0
- models/embeddings/aligned/cdo_32d.bin +3 -0
- models/embeddings/aligned/cdo_32d.meta.json +1 -0
- models/embeddings/aligned/cdo_32d.projection.npy +3 -0
- models/embeddings/aligned/cdo_32d_metadata.json +8 -0
- models/embeddings/aligned/cdo_64d.bin +3 -0
- models/embeddings/aligned/cdo_64d.meta.json +1 -0
- models/embeddings/aligned/cdo_64d.projection.npy +3 -0
- models/embeddings/aligned/cdo_64d_metadata.json +8 -0
- models/embeddings/monolingual/cdo_128d.bin +2 -2
- models/embeddings/monolingual/cdo_128d_metadata.json +1 -1
- models/embeddings/monolingual/cdo_32d.bin +2 -2
- models/embeddings/monolingual/cdo_32d_metadata.json +1 -1
- models/embeddings/monolingual/cdo_64d.bin +2 -2
- models/embeddings/monolingual/cdo_64d_metadata.json +1 -1
- models/subword_markov/cdo_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/cdo_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/cdo_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/cdo_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/cdo_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/cdo_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/cdo_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/cdo_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/cdo_2gram_subword.parquet +2 -2
- models/subword_ngram/cdo_2gram_subword_metadata.json +2 -2
- models/subword_ngram/cdo_3gram_subword.parquet +2 -2
- models/subword_ngram/cdo_3gram_subword_metadata.json +2 -2
- models/subword_ngram/cdo_4gram_subword.parquet +2 -2
- models/subword_ngram/cdo_4gram_subword_metadata.json +2 -2
- models/subword_ngram/cdo_5gram_subword.parquet +3 -0
- models/subword_ngram/cdo_5gram_subword_metadata.json +7 -0
- models/tokenizer/cdo_tokenizer_32k.model +2 -2
- models/tokenizer/cdo_tokenizer_32k.vocab +0 -0
- models/tokenizer/cdo_tokenizer_64k.model +2 -2
- models/tokenizer/cdo_tokenizer_64k.vocab +0 -0
- models/vocabulary/cdo_vocabulary.parquet +2 -2
- models/vocabulary/cdo_vocabulary_metadata.json +9 -9
- models/word_markov/cdo_markov_ctx1_word.parquet +2 -2
- models/word_markov/cdo_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/cdo_markov_ctx2_word.parquet +2 -2
- models/word_markov/cdo_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/cdo_markov_ctx3_word.parquet +2 -2
- models/word_markov/cdo_markov_ctx3_word_metadata.json +2 -2
- models/word_markov/cdo_markov_ctx4_word.parquet +2 -2
- models/word_markov/cdo_markov_ctx4_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: cdo
|
| 3 |
-
language_name:
|
| 4 |
language_family: sinitic_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-sinitic_other
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 2.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
value: 0
|
| 33 |
generated: 2026-01-03
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -60,7 +70,7 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 60 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 61 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 62 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 63 |
-
- [6. Morphological Analysis (Experimental)](#6
|
| 64 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 65 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 66 |
- [Visualizations Index](#visualizations-index)
|
|
@@ -80,39 +90,39 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 80 |
|
| 81 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 82 |
|------------|-------------|---------------|----------|--------------|
|
| 83 |
-
| **32k** | 2.
|
| 84 |
-
| **64k** | 2.
|
| 85 |
|
| 86 |
### Tokenization Examples
|
| 87 |
|
| 88 |
Below are sample sentences tokenized with each vocabulary size:
|
| 89 |
|
| 90 |
-
**Sample 1:** `
|
| 91 |
|
| 92 |
| Vocab | Tokens | Count |
|
| 93 |
|-------|--------|-------|
|
| 94 |
-
| 32k | `▁
|
| 95 |
-
| 64k | `▁
|
| 96 |
|
| 97 |
-
**Sample 2:** `
|
| 98 |
|
| 99 |
| Vocab | Tokens | Count |
|
| 100 |
|-------|--------|-------|
|
| 101 |
-
| 32k | `▁
|
| 102 |
-
| 64k | `▁
|
| 103 |
|
| 104 |
-
**Sample 3:** `
|
| 105 |
|
| 106 |
| Vocab | Tokens | Count |
|
| 107 |
|-------|--------|-------|
|
| 108 |
-
| 32k | `▁
|
| 109 |
-
| 64k | `▁
|
| 110 |
|
| 111 |
|
| 112 |
### Key Findings
|
| 113 |
|
| 114 |
-
- **Best Compression:** 64k achieves 2.
|
| 115 |
-
- **Lowest UNK Rate:** 32k with 0.
|
| 116 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 117 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 118 |
|
|
@@ -129,12 +139,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 129 |
|
| 130 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 131 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 132 |
-
| **2-gram** | Word | 3,
|
| 133 |
-
| **2-gram** | Subword |
|
| 134 |
-
| **3-gram** | Word | 4,
|
| 135 |
-
| **3-gram** | Subword | 1,
|
| 136 |
-
| **4-gram** | Word | 8,
|
| 137 |
-
| **4-gram** | Subword | 5,
|
|
|
|
|
|
|
| 138 |
|
| 139 |
### Top 5 N-grams by Size
|
| 140 |
|
|
@@ -142,18 +154,18 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 142 |
|
| 143 |
| Rank | N-gram | Count |
|
| 144 |
|------|--------|-------|
|
| 145 |
-
| 1 | `gì siŏh` | 6,
|
| 146 |
-
| 2 | `siŏh ciáh` | 6,
|
| 147 |
-
| 3 | `mī guók` | 3,
|
| 148 |
-
| 4 | `sê mī` | 3,
|
| 149 |
| 5 | `gì gông` | 3,000 |
|
| 150 |
|
| 151 |
**3-grams (Word):**
|
| 152 |
|
| 153 |
| Rank | N-gram | Count |
|
| 154 |
|------|--------|-------|
|
| 155 |
-
| 1 | `gì siŏh ciáh` | 5,
|
| 156 |
-
| 2 | `sê mī guók` | 3,
|
| 157 |
| 3 | `siŏh ciáh gông` | 3,000 |
|
| 158 |
| 4 | `ciáh gông gì` | 2,557 |
|
| 159 |
| 5 | `gông gì gông` | 2,557 |
|
|
@@ -163,47 +175,67 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 163 |
| Rank | N-gram | Count |
|
| 164 |
|------|--------|-------|
|
| 165 |
| 1 | `gì siŏh ciáh gông` | 3,000 |
|
| 166 |
-
| 2 | `ciáh gông
|
| 167 |
-
| 3 | `
|
| 168 |
| 4 | `county sê mī guók` | 1,971 |
|
| 169 |
| 5 | `gông sê mī guók` | 1,029 |
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
**2-grams (Subword):**
|
| 172 |
|
| 173 |
| Rank | N-gram | Count |
|
| 174 |
|------|--------|-------|
|
| 175 |
-
| 1 | `n g` |
|
| 176 |
-
| 2 | `_ g` |
|
| 177 |
-
| 3 | `g -` |
|
| 178 |
-
| 4 | `g _` | 55,
|
| 179 |
-
| 5 | `_ s` | 41,
|
| 180 |
|
| 181 |
**3-grams (Subword):**
|
| 182 |
|
| 183 |
| Rank | N-gram | Count |
|
| 184 |
|------|--------|-------|
|
| 185 |
-
| 1 | `n g -` |
|
| 186 |
-
| 2 | `n g _` | 55,
|
| 187 |
-
| 3 | `_ g ì` | 23,
|
| 188 |
-
| 4 | `g ì _` | 22,
|
| 189 |
-
| 5 | `_ s i` | 14,
|
| 190 |
|
| 191 |
**4-grams (Subword):**
|
| 192 |
|
| 193 |
| Rank | N-gram | Count |
|
| 194 |
|------|--------|-------|
|
| 195 |
-
| 1 | `_ g ì _` | 22,
|
| 196 |
-
| 2 | `_ s ê _` | 13,
|
| 197 |
-
| 3 | `n g _ g` | 11,
|
| 198 |
-
| 4 | `i ŏ h _` | 10,
|
| 199 |
-
| 5 | `_ s i ŏ` | 9,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
|
| 202 |
### Key Findings
|
| 203 |
|
| 204 |
-
- **Best Perplexity:** 2-gram (subword) with
|
| 205 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 206 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 207 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 208 |
|
| 209 |
---
|
|
@@ -219,14 +251,14 @@ Below are sample sentences tokenized with each vocabulary size:
|
|
| 219 |
|
| 220 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 221 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 222 |
-
| **1** | Word | 0.
|
| 223 |
-
| **1** | Subword | 0.
|
| 224 |
-
| **2** | Word | 0.
|
| 225 |
-
| **2** | Subword | 0.
|
| 226 |
-
| **3** | Word | 0.
|
| 227 |
-
| **3** | Subword | 0.
|
| 228 |
-
| **4** | Word | 0.
|
| 229 |
-
| **4** | Subword | 0.
|
| 230 |
|
| 231 |
### Generated Text Samples (Word-based)
|
| 232 |
|
|
@@ -234,27 +266,27 @@ Below are text samples generated from each word-based Markov chain model:
|
|
| 234 |
|
| 235 |
**Context Size 1:**
|
| 236 |
|
| 237 |
-
1. `gì
|
| 238 |
-
2. `sê
|
| 239 |
-
3. `siŏh
|
| 240 |
|
| 241 |
**Context Size 2:**
|
| 242 |
|
| 243 |
-
1. `gì siŏh
|
| 244 |
-
2. `siŏh ciáh
|
| 245 |
-
3. `mī guók
|
| 246 |
|
| 247 |
**Context Size 3:**
|
| 248 |
|
| 249 |
-
1. `gì siŏh ciáh
|
| 250 |
-
2. `sê mī guók
|
| 251 |
3. `siŏh ciáh gông gì gông`
|
| 252 |
|
| 253 |
**Context Size 4:**
|
| 254 |
|
| 255 |
1. `gì siŏh ciáh gông gì gông`
|
| 256 |
2. `siŏh ciáh gông gì gông`
|
| 257 |
-
3. `county sê mī guók
|
| 258 |
|
| 259 |
|
| 260 |
### Generated Text Samples (Subword-based)
|
|
@@ -263,34 +295,34 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 263 |
|
| 264 |
**Context Size 1:**
|
| 265 |
|
| 266 |
-
1. `
|
| 267 |
-
2. `
|
| 268 |
-
3. `
|
| 269 |
|
| 270 |
**Context Size 2:**
|
| 271 |
|
| 272 |
-
1. `
|
| 273 |
-
2. `_g
|
| 274 |
-
3. `g-
|
| 275 |
|
| 276 |
**Context Size 3:**
|
| 277 |
|
| 278 |
-
1. `ng-
|
| 279 |
-
2. `
|
| 280 |
-
3. `_gì
|
| 281 |
|
| 282 |
**Context Size 4:**
|
| 283 |
|
| 284 |
-
1. `_gì
|
| 285 |
-
2. `_sê
|
| 286 |
-
3. `ng_g
|
| 287 |
|
| 288 |
|
| 289 |
### Key Findings
|
| 290 |
|
| 291 |
- **Best Predictability:** Context-4 (word) with 94.7% predictability
|
| 292 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 293 |
-
- **Memory Trade-off:** Larger contexts require more storage (225,
|
| 294 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 295 |
|
| 296 |
---
|
|
@@ -306,64 +338,64 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 306 |
|
| 307 |
| Metric | Value |
|
| 308 |
|--------|-------|
|
| 309 |
-
| Vocabulary Size | 9,
|
| 310 |
-
| Total Tokens |
|
| 311 |
-
| Mean Frequency |
|
| 312 |
| Median Frequency | 3 |
|
| 313 |
-
| Frequency Std Dev |
|
| 314 |
|
| 315 |
### Most Common Words
|
| 316 |
|
| 317 |
| Rank | Word | Frequency |
|
| 318 |
|------|------|-----------|
|
| 319 |
-
| 1 | gì | 23,
|
| 320 |
-
| 2 | sê | 14,
|
| 321 |
-
| 3 | siŏh | 9,
|
| 322 |
| 4 | gông | 9,087 |
|
| 323 |
-
| 5 | guók | 8,
|
| 324 |
-
| 6 | ciáh | 7,
|
| 325 |
-
| 7 | nièng | 5,
|
| 326 |
-
| 8 | ngṳ̄ | 5,
|
| 327 |
-
| 9 | sié | 4,
|
| 328 |
-
| 10 | gáu | 4,
|
| 329 |
|
| 330 |
### Least Common Words (from vocabulary)
|
| 331 |
|
| 332 |
| Rank | Word | Frequency |
|
| 333 |
|------|------|-----------|
|
| 334 |
-
| 1 |
|
| 335 |
-
| 2 |
|
| 336 |
-
| 3 |
|
| 337 |
-
| 4 |
|
| 338 |
-
| 5 |
|
| 339 |
-
| 6 |
|
| 340 |
-
| 7 |
|
| 341 |
-
| 8 |
|
| 342 |
-
| 9 |
|
| 343 |
-
| 10 |
|
| 344 |
|
| 345 |
### Zipf's Law Analysis
|
| 346 |
|
| 347 |
| Metric | Value |
|
| 348 |
|--------|-------|
|
| 349 |
-
| Zipf Coefficient | 1.
|
| 350 |
-
| R² (Goodness of Fit) | 0.
|
| 351 |
| Adherence Quality | **excellent** |
|
| 352 |
|
| 353 |
### Coverage Analysis
|
| 354 |
|
| 355 |
| Top N Words | Coverage |
|
| 356 |
|-------------|----------|
|
| 357 |
-
| Top 100 | 52.
|
| 358 |
-
| Top 1,000 | 91.
|
| 359 |
| Top 5,000 | 98.0% |
|
| 360 |
| Top 10,000 | 0.0% |
|
| 361 |
|
| 362 |
### Key Findings
|
| 363 |
|
| 364 |
-
- **Zipf Compliance:** R²=0.
|
| 365 |
-
- **High Frequency Dominance:** Top 100 words cover 52.
|
| 366 |
-
- **Long Tail:** -
|
| 367 |
|
| 368 |
---
|
| 369 |
## 5. Word Embeddings Evaluation
|
|
@@ -379,37 +411,40 @@ Below are text samples generated from each subword-based Markov chain model:
|
|
| 379 |
|
| 380 |
### 5.1 Cross-Lingual Alignment
|
| 381 |
|
| 382 |
-
|
|
|
|
|
|
|
| 383 |
|
| 384 |
|
| 385 |
### 5.2 Model Comparison
|
| 386 |
|
| 387 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 388 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 389 |
-
| **mono_32d** | 32 | 0.
|
| 390 |
-
| **mono_64d** | 64 | 0.
|
| 391 |
-
| **mono_128d** | 128 | 0.
|
|
|
|
|
|
|
|
|
|
| 392 |
|
| 393 |
### Key Findings
|
| 394 |
|
| 395 |
-
- **Best Isotropy:**
|
| 396 |
-
- **Semantic Density:** Average pairwise similarity of 0.
|
| 397 |
-
- **Alignment Quality:**
|
| 398 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 399 |
|
| 400 |
---
|
| 401 |
## 6. Morphological Analysis (Experimental)
|
| 402 |
|
| 403 |
-
> ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
|
| 404 |
-
|
| 405 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 406 |
|
| 407 |
### 6.1 Productivity & Complexity
|
| 408 |
|
| 409 |
| Metric | Value | Interpretation | Recommendation |
|
| 410 |
|--------|-------|----------------|----------------|
|
| 411 |
-
| Productivity Index | **
|
| 412 |
-
| Idiomaticity Gap |
|
| 413 |
|
| 414 |
### 6.2 Affix Inventory (Productive Units)
|
| 415 |
|
|
@@ -424,10 +459,10 @@ Bound stems are high-frequency subword units that are semantically cohesive but
|
|
| 424 |
|
| 425 |
| Stem | Cohesion | Substitutability | Examples |
|
| 426 |
|------|----------|------------------|----------|
|
| 427 |
-
| `áung` |
|
| 428 |
-
| `âung` | 1.
|
| 429 |
-
| `iăng` | 1.
|
| 430 |
-
| `iāng` | 1.
|
| 431 |
|
| 432 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 433 |
|
|
@@ -446,7 +481,7 @@ Using **Recursive Hierarchical Substitutability**, we decompose complex words in
|
|
| 446 |
### 6.6 Linguistic Interpretation
|
| 447 |
|
| 448 |
> **Automated Insight:**
|
| 449 |
-
The language
|
| 450 |
|
| 451 |
---
|
| 452 |
## 7. Summary & Recommendations
|
|
@@ -458,7 +493,7 @@ The language CDO appears to be more isolating or has a highly fixed vocabulary.
|
|
| 458 |
| Component | Recommended | Rationale |
|
| 459 |
|-----------|-------------|-----------|
|
| 460 |
| Tokenizer | **64k BPE** | Best compression (2.89x) |
|
| 461 |
-
| N-gram | **2-gram** | Lowest perplexity (
|
| 462 |
| Markov | **Context-4** | Highest predictability (94.7%) |
|
| 463 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 464 |
|
|
@@ -673,4 +708,4 @@ MIT License - Free for academic and commercial use.
|
|
| 673 |
---
|
| 674 |
*Generated by Wikilangs Models Pipeline*
|
| 675 |
|
| 676 |
-
*Report Date: 2026-01-03
|
|
|
|
| 1 |
---
|
| 2 |
language: cdo
|
| 3 |
+
language_name: Min Dong Chinese
|
| 4 |
language_family: sinitic_other
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-sinitic_other
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 2.891
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.5099
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
value: 0
|
| 43 |
generated: 2026-01-03
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Min Dong Chinese - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Min Dong Chinese** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
|
|
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **32k** | 2.755x | 2.76 | 0.1043% | 256,064 |
|
| 94 |
+
| **64k** | 2.891x 🏆 | 2.89 | 0.1094% | 244,079 |
|
| 95 |
|
| 96 |
### Tokenization Examples
|
| 97 |
|
| 98 |
Below are sample sentences tokenized with each vocabulary size:
|
| 99 |
|
| 100 |
+
**Sample 1:** `Jessamine Gông (Ĭng-ngṳ̄: Jessamine County) sê Mī-guók Kentucky gì siŏh ciáh gôn...`
|
| 101 |
|
| 102 |
| Vocab | Tokens | Count |
|
| 103 |
|-------|--------|-------|
|
| 104 |
+
| 32k | `▁j ess am ine ▁gông ▁( ĭng - ngṳ̄ : ... (+18 more)` | 28 |
|
| 105 |
+
| 64k | `▁jessamine ▁gông ▁( ĭng - ngṳ̄ : ▁jessamine ▁county ) ... (+12 more)` | 22 |
|
| 106 |
|
| 107 |
+
**Sample 2:** `2 nguŏk 1 hô̤ sê nùng-lĭk 2 nguŏk gì dâ̤ 1 gĕ̤ng. 2 nguŏk`
|
| 108 |
|
| 109 |
| Vocab | Tokens | Count |
|
| 110 |
|-------|--------|-------|
|
| 111 |
+
| 32k | `▁ 2 ▁nguŏk ▁ 1 ▁hô̤ ▁sê ▁nùng - lĭk ... (+12 more)` | 22 |
|
| 112 |
+
| 64k | `▁ 2 ▁nguŏk ▁ 1 ▁hô̤ ▁sê ▁nùng - lĭk ... (+12 more)` | 22 |
|
| 113 |
|
| 114 |
+
**Sample 3:** `McLean Gông (Ĭng-ngṳ̄: McLean County) sê Mī-guók Kentucky gì siŏh ciáh gông. gì ...`
|
| 115 |
|
| 116 |
| Vocab | Tokens | Count |
|
| 117 |
|-------|--------|-------|
|
| 118 |
+
| 32k | `▁mclean ▁gông ▁( ĭng - ngṳ̄ : ▁mclean ▁county ) ... (+12 more)` | 22 |
|
| 119 |
+
| 64k | `▁mclean ▁gông ▁( ĭng - ngṳ̄ : ▁mclean ▁county ) ... (+12 more)` | 22 |
|
| 120 |
|
| 121 |
|
| 122 |
### Key Findings
|
| 123 |
|
| 124 |
+
- **Best Compression:** 64k achieves 2.891x compression
|
| 125 |
+
- **Lowest UNK Rate:** 32k with 0.1043% unknown tokens
|
| 126 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 127 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 128 |
|
|
|
|
| 139 |
|
| 140 |
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 141 |
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 142 |
+
| **2-gram** | Word | 3,139 | 11.62 | 11,777 | 27.5% | 59.0% |
|
| 143 |
+
| **2-gram** | Subword | 341 🏆 | 8.41 | 6,920 | 63.6% | 95.8% |
|
| 144 |
+
| **3-gram** | Word | 4,753 | 12.21 | 18,116 | 23.7% | 52.0% |
|
| 145 |
+
| **3-gram** | Subword | 1,655 | 10.69 | 21,022 | 36.1% | 75.9% |
|
| 146 |
+
| **4-gram** | Word | 8,558 | 13.06 | 31,134 | 18.5% | 45.2% |
|
| 147 |
+
| **4-gram** | Subword | 5,737 | 12.49 | 69,190 | 23.7% | 55.8% |
|
| 148 |
+
| **5-gram** | Word | 7,101 | 12.79 | 23,547 | 17.3% | 48.1% |
|
| 149 |
+
| **5-gram** | Subword | 13,084 | 13.68 | 106,632 | 16.4% | 41.9% |
|
| 150 |
|
| 151 |
### Top 5 N-grams by Size
|
| 152 |
|
|
|
|
| 154 |
|
| 155 |
| Rank | N-gram | Count |
|
| 156 |
|------|--------|-------|
|
| 157 |
+
| 1 | `gì siŏh` | 6,261 |
|
| 158 |
+
| 2 | `siŏh ciáh` | 6,233 |
|
| 159 |
+
| 3 | `mī guók` | 3,384 |
|
| 160 |
+
| 4 | `sê mī` | 3,190 |
|
| 161 |
| 5 | `gì gông` | 3,000 |
|
| 162 |
|
| 163 |
**3-grams (Word):**
|
| 164 |
|
| 165 |
| Rank | N-gram | Count |
|
| 166 |
|------|--------|-------|
|
| 167 |
+
| 1 | `gì siŏh ciáh` | 5,415 |
|
| 168 |
+
| 2 | `sê mī guók` | 3,172 |
|
| 169 |
| 3 | `siŏh ciáh gông` | 3,000 |
|
| 170 |
| 4 | `ciáh gông gì` | 2,557 |
|
| 171 |
| 5 | `gông gì gông` | 2,557 |
|
|
|
|
| 175 |
| Rank | N-gram | Count |
|
| 176 |
|------|--------|-------|
|
| 177 |
| 1 | `gì siŏh ciáh gông` | 3,000 |
|
| 178 |
+
| 2 | `siŏh ciáh gông gì` | 2,557 |
|
| 179 |
+
| 3 | `ciáh gông gì gông` | 2,557 |
|
| 180 |
| 4 | `county sê mī guók` | 1,971 |
|
| 181 |
| 5 | `gông sê mī guók` | 1,029 |
|
| 182 |
|
| 183 |
+
**5-grams (Word):**
|
| 184 |
+
|
| 185 |
+
| Rank | N-gram | Count |
|
| 186 |
+
|------|--------|-------|
|
| 187 |
+
| 1 | `siŏh ciáh gông gì gông` | 2,557 |
|
| 188 |
+
| 2 | `gì siŏh ciáh gông gì` | 2,557 |
|
| 189 |
+
| 3 | `diē sié gì siŏh ciáh` | 390 |
|
| 190 |
+
| 4 | `ìng mìng gê̤ṳng huò guók` | 385 |
|
| 191 |
+
| 5 | `dâi chók sié guó sié` | 348 |
|
| 192 |
+
|
| 193 |
**2-grams (Subword):**
|
| 194 |
|
| 195 |
| Rank | N-gram | Count |
|
| 196 |
|------|--------|-------|
|
| 197 |
+
| 1 | `n g` | 148,099 |
|
| 198 |
+
| 2 | `_ g` | 60,261 |
|
| 199 |
+
| 3 | `g -` | 56,437 |
|
| 200 |
+
| 4 | `g _` | 55,736 |
|
| 201 |
+
| 5 | `_ s` | 41,503 |
|
| 202 |
|
| 203 |
**3-grams (Subword):**
|
| 204 |
|
| 205 |
| Rank | N-gram | Count |
|
| 206 |
|------|--------|-------|
|
| 207 |
+
| 1 | `n g -` | 56,411 |
|
| 208 |
+
| 2 | `n g _` | 55,623 |
|
| 209 |
+
| 3 | `_ g ì` | 23,145 |
|
| 210 |
+
| 4 | `g ì _` | 22,365 |
|
| 211 |
+
| 5 | `_ s i` | 14,188 |
|
| 212 |
|
| 213 |
**4-grams (Subword):**
|
| 214 |
|
| 215 |
| Rank | N-gram | Count |
|
| 216 |
|------|--------|-------|
|
| 217 |
+
| 1 | `_ g ì _` | 22,216 |
|
| 218 |
+
| 2 | `_ s ê _` | 13,258 |
|
| 219 |
+
| 3 | `n g _ g` | 11,418 |
|
| 220 |
+
| 4 | `i ŏ h _` | 10,678 |
|
| 221 |
+
| 5 | `_ s i ŏ` | 9,423 |
|
| 222 |
+
|
| 223 |
+
**5-grams (Subword):**
|
| 224 |
+
|
| 225 |
+
| Rank | N-gram | Count |
|
| 226 |
+
|------|--------|-------|
|
| 227 |
+
| 1 | `_ s i ŏ h` | 9,171 |
|
| 228 |
+
| 2 | `_ g ô n g` | 9,066 |
|
| 229 |
+
| 3 | `s i ŏ h _` | 8,474 |
|
| 230 |
+
| 4 | `_ g ì _ s` | 8,113 |
|
| 231 |
+
| 5 | `i ŏ h _ c` | 7,536 |
|
| 232 |
|
| 233 |
|
| 234 |
### Key Findings
|
| 235 |
|
| 236 |
+
- **Best Perplexity:** 2-gram (subword) with 341
|
| 237 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 238 |
+
- **Coverage:** Top-1000 patterns cover ~42% of corpus
|
| 239 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 240 |
|
| 241 |
---
|
|
|
|
| 251 |
|
| 252 |
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 253 |
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 254 |
+
| **1** | Word | 0.4885 | 1.403 | 4.74 | 29,717 | 51.2% |
|
| 255 |
+
| **1** | Subword | 0.3463 | 1.271 | 2.92 | 25,650 | 65.4% |
|
| 256 |
+
| **2** | Word | 0.3200 | 1.248 | 1.81 | 139,964 | 68.0% |
|
| 257 |
+
| **2** | Subword | 0.2749 | 1.210 | 1.79 | 74,833 | 72.5% |
|
| 258 |
+
| **3** | Word | 0.1204 | 1.087 | 1.23 | 250,754 | 88.0% |
|
| 259 |
+
| **3** | Subword | 0.2342 | 1.176 | 1.69 | 133,597 | 76.6% |
|
| 260 |
+
| **4** | Word | 0.0528 🏆 | 1.037 | 1.09 | 303,909 | 94.7% |
|
| 261 |
+
| **4** | Subword | 0.2293 | 1.172 | 1.54 | 225,426 | 77.1% |
|
| 262 |
|
| 263 |
### Generated Text Samples (Word-based)
|
| 264 |
|
|
|
|
| 266 |
|
| 267 |
**Context Size 1:**
|
| 268 |
|
| 269 |
+
1. `gì siŏh déng bĭng giàng guó mī guók gì kó găk hók ciŭ gì siŏh gă`
|
| 270 |
+
2. `sê mī guók sì dâi chók sirens nièng gáu huòng 閩江公園 dê lī hŏk â dā̤`
|
| 271 |
+
3. `siŏh cṳ̄ng ī gì céng sī mò̤ siū ăng gô iók hâng săng sê mī guók`
|
| 272 |
|
| 273 |
**Context Size 2:**
|
| 274 |
|
| 275 |
+
1. `gì siŏh ciáh gông gì gông`
|
| 276 |
+
2. `siŏh ciáh mìng cŭk iâ sê giū cê̤ṳ sìng bŏng gá ĭ sá̤ bò̤ dìng uòng 陳垣`
|
| 277 |
+
3. `mī guók tennessee gì siŏh cṳ̄ng â̤ buŏi gì sèng dău cê mō̤ gì dâ̤ 140 ôi`
|
| 278 |
|
| 279 |
**Context Size 3:**
|
| 280 |
|
| 281 |
+
1. `gì siŏh ciáh gáu puái céng tūng puái nêng dêng sê siŏh ciáh bìng nièng tàu gĕ̤ng sê`
|
| 282 |
+
2. `sê mī guók dâ̤ 19 êng gáu huòng 310 nièng gáu 314 nièng câi ôi nièng hô̤ tái`
|
| 283 |
3. `siŏh ciáh gông gì gông`
|
| 284 |
|
| 285 |
**Context Size 4:**
|
| 286 |
|
| 287 |
1. `gì siŏh ciáh gông gì gông`
|
| 288 |
2. `siŏh ciáh gông gì gông`
|
| 289 |
+
3. `county sê mī guók georgia gì siŏh ciáh gông gì gông`
|
| 290 |
|
| 291 |
|
| 292 |
### Generated Text Samples (Subword-based)
|
|
|
|
| 295 |
|
| 296 |
**Context Size 1:**
|
| 297 |
|
| 298 |
+
1. `_7_g_sê-ngì-gì_s`
|
| 299 |
+
2. `g_cīng_(ĭngṳ̄_sēn`
|
| 300 |
+
3. `nerotŭ_sê_g_sê-m`
|
| 301 |
|
| 302 |
**Context Size 2:**
|
| 303 |
|
| 304 |
+
1. `ngiù_hâiu-gáu-sī“`
|
| 305 |
+
2. `_guô-hô̤_gāi_gôngu`
|
| 306 |
+
3. `g-gă_dìng_coung-h`
|
| 307 |
|
| 308 |
**Context Size 3:**
|
| 309 |
|
| 310 |
+
1. `ng-huá-hŏk-pŭng-cŭ`
|
| 311 |
+
2. `ng_siàng_gâe̤ng_(埃及`
|
| 312 |
+
3. `_gì_pàng,_ĭ_mĕ̤k-ci`
|
| 313 |
|
| 314 |
**Context Size 4:**
|
| 315 |
|
| 316 |
+
1. `_gì_siŏh_ciáh_dĭng_`
|
| 317 |
+
2. `_sê_mī-guók-nè̤ng_nè̤`
|
| 318 |
+
3. `ng_gék-cĭu_gó_ô_sié`
|
| 319 |
|
| 320 |
|
| 321 |
### Key Findings
|
| 322 |
|
| 323 |
- **Best Predictability:** Context-4 (word) with 94.7% predictability
|
| 324 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 325 |
+
- **Memory Trade-off:** Larger contexts require more storage (225,426 contexts)
|
| 326 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 327 |
|
| 328 |
---
|
|
|
|
| 338 |
|
| 339 |
| Metric | Value |
|
| 340 |
|--------|-------|
|
| 341 |
+
| Vocabulary Size | 9,566 |
|
| 342 |
+
| Total Tokens | 470,049 |
|
| 343 |
+
| Mean Frequency | 49.14 |
|
| 344 |
| Median Frequency | 3 |
|
| 345 |
+
| Frequency Std Dev | 396.77 |
|
| 346 |
|
| 347 |
### Most Common Words
|
| 348 |
|
| 349 |
| Rank | Word | Frequency |
|
| 350 |
|------|------|-----------|
|
| 351 |
+
| 1 | gì | 23,347 |
|
| 352 |
+
| 2 | sê | 14,101 |
|
| 353 |
+
| 3 | siŏh | 9,273 |
|
| 354 |
| 4 | gông | 9,087 |
|
| 355 |
+
| 5 | guók | 8,556 |
|
| 356 |
+
| 6 | ciáh | 7,148 |
|
| 357 |
+
| 7 | nièng | 5,899 |
|
| 358 |
+
| 8 | ngṳ̄ | 5,273 |
|
| 359 |
+
| 9 | sié | 4,623 |
|
| 360 |
+
| 10 | gáu | 4,196 |
|
| 361 |
|
| 362 |
### Least Common Words (from vocabulary)
|
| 363 |
|
| 364 |
| Rank | Word | Frequency |
|
| 365 |
|------|------|-----------|
|
| 366 |
+
| 1 | 小天王國 | 2 |
|
| 367 |
+
| 2 | baidu | 2 |
|
| 368 |
+
| 3 | 宋在康 | 2 |
|
| 369 |
+
| 4 | woolridge | 2 |
|
| 370 |
+
| 5 | 六一路 | 2 |
|
| 371 |
+
| 6 | 神壇樹 | 2 |
|
| 372 |
+
| 7 | 신단수 | 2 |
|
| 373 |
+
| 8 | 날 | 2 |
|
| 374 |
+
| 9 | kbo | 2 |
|
| 375 |
+
| 10 | 우주항공청 | 2 |
|
| 376 |
|
| 377 |
### Zipf's Law Analysis
|
| 378 |
|
| 379 |
| Metric | Value |
|
| 380 |
|--------|-------|
|
| 381 |
+
| Zipf Coefficient | 1.4007 |
|
| 382 |
+
| R² (Goodness of Fit) | 0.957225 |
|
| 383 |
| Adherence Quality | **excellent** |
|
| 384 |
|
| 385 |
### Coverage Analysis
|
| 386 |
|
| 387 |
| Top N Words | Coverage |
|
| 388 |
|-------------|----------|
|
| 389 |
+
| Top 100 | 52.1% |
|
| 390 |
+
| Top 1,000 | 91.8% |
|
| 391 |
| Top 5,000 | 98.0% |
|
| 392 |
| Top 10,000 | 0.0% |
|
| 393 |
|
| 394 |
### Key Findings
|
| 395 |
|
| 396 |
+
- **Zipf Compliance:** R²=0.9572 indicates excellent adherence to Zipf's law
|
| 397 |
+
- **High Frequency Dominance:** Top 100 words cover 52.1% of corpus
|
| 398 |
+
- **Long Tail:** -434 words needed for remaining 100.0% coverage
|
| 399 |
|
| 400 |
---
|
| 401 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 411 |
|
| 412 |
### 5.1 Cross-Lingual Alignment
|
| 413 |
|
| 414 |
+

|
| 415 |
+
|
| 416 |
+

|
| 417 |
|
| 418 |
|
| 419 |
### 5.2 Model Comparison
|
| 420 |
|
| 421 |
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 422 |
|-------|-----------|----------|------------------|---------------|----------------|
|
| 423 |
+
| **mono_32d** | 32 | 0.5099 | 0.4122 | N/A | N/A |
|
| 424 |
+
| **mono_64d** | 64 | 0.2128 | 0.3926 | N/A | N/A |
|
| 425 |
+
| **mono_128d** | 128 | 0.0308 | 0.3921 | N/A | N/A |
|
| 426 |
+
| **aligned_32d** | 32 | 0.5099 🏆 | 0.4223 | 0.0120 | 0.1260 |
|
| 427 |
+
| **aligned_64d** | 64 | 0.2128 | 0.3730 | 0.0280 | 0.2380 |
|
| 428 |
+
| **aligned_128d** | 128 | 0.0308 | 0.3804 | 0.0380 | 0.2160 |
|
| 429 |
|
| 430 |
### Key Findings
|
| 431 |
|
| 432 |
+
- **Best Isotropy:** aligned_32d with 0.5099 (more uniform distribution)
|
| 433 |
+
- **Semantic Density:** Average pairwise similarity of 0.3954. Lower values indicate better semantic separation.
|
| 434 |
+
- **Alignment Quality:** Aligned models achieve up to 3.8% R@1 in cross-lingual retrieval.
|
| 435 |
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 436 |
|
| 437 |
---
|
| 438 |
## 6. Morphological Analysis (Experimental)
|
| 439 |
|
|
|
|
|
|
|
| 440 |
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 441 |
|
| 442 |
### 6.1 Productivity & Complexity
|
| 443 |
|
| 444 |
| Metric | Value | Interpretation | Recommendation |
|
| 445 |
|--------|-------|----------------|----------------|
|
| 446 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 447 |
+
| Idiomaticity Gap | **0.147** | Low formulaic content | - |
|
| 448 |
|
| 449 |
### 6.2 Affix Inventory (Productive Units)
|
| 450 |
|
|
|
|
| 459 |
|
| 460 |
| Stem | Cohesion | Substitutability | Examples |
|
| 461 |
|------|----------|------------------|----------|
|
| 462 |
+
| `áung` | 2.01x | 9 contexts | dáung, sáung, gáung |
|
| 463 |
+
| `âung` | 1.99x | 9 contexts | hâung, dâung, lâung |
|
| 464 |
+
| `iăng` | 1.88x | 7 contexts | siăng, hiăng, tiăng |
|
| 465 |
+
| `iāng` | 1.54x | 8 contexts | niāng, biāng, tiāng |
|
| 466 |
|
| 467 |
### 6.4 Affix Compatibility (Co-occurrence)
|
| 468 |
|
|
|
|
| 481 |
### 6.6 Linguistic Interpretation
|
| 482 |
|
| 483 |
> **Automated Insight:**
|
| 484 |
+
The language Min Dong Chinese shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 485 |
|
| 486 |
---
|
| 487 |
## 7. Summary & Recommendations
|
|
|
|
| 493 |
| Component | Recommended | Rationale |
|
| 494 |
|-----------|-------------|-----------|
|
| 495 |
| Tokenizer | **64k BPE** | Best compression (2.89x) |
|
| 496 |
+
| N-gram | **2-gram** | Lowest perplexity (341) |
|
| 497 |
| Markov | **Context-4** | Highest predictability (94.7%) |
|
| 498 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 499 |
|
|
|
|
| 708 |
---
|
| 709 |
*Generated by Wikilangs Models Pipeline*
|
| 710 |
|
| 711 |
+
*Report Date: 2026-01-03 20:07:11*
|
models/embeddings/aligned/cdo_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f0e088015b1d1c1d96463a5474f4a8111c8b8eeb2313e4d8bc4aca5e41fc56d
|
| 3 |
+
size 1030144124
|
models/embeddings/aligned/cdo_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cdo", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cdo_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37e55fe9fe01120afbbdfa1bba712d903bc5772106302e13b181df94ae3447e2
|
| 3 |
+
size 65664
|
models/embeddings/aligned/cdo_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cdo",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1008,
|
| 7 |
+
"vocab_size": 5890
|
| 8 |
+
}
|
models/embeddings/aligned/cdo_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86a7dce9574a1b349e8220d6f822717130a1b46d2b0974b780a9d477774160c8
|
| 3 |
+
size 257620604
|
models/embeddings/aligned/cdo_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cdo", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cdo_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74adfe83fc67339561073ef092411ca4c2419545d4da63d7e3027e04aebe1f1a
|
| 3 |
+
size 4224
|
models/embeddings/aligned/cdo_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cdo",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1008,
|
| 7 |
+
"vocab_size": 5890
|
| 8 |
+
}
|
models/embeddings/aligned/cdo_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff1b4674bfe38edab895e88af4342b16a3f9789a7c958abf6e47054845cd6aa4
|
| 3 |
+
size 515128444
|
models/embeddings/aligned/cdo_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "cdo", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/cdo_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:22c599ba6e1acd33d7d4166b18a164e7368ae4a2067a5d4caa57f682863aa44c
|
| 3 |
+
size 16512
|
models/embeddings/aligned/cdo_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "cdo",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1008,
|
| 7 |
+
"vocab_size": 5890
|
| 8 |
+
}
|
models/embeddings/monolingual/cdo_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5f0e088015b1d1c1d96463a5474f4a8111c8b8eeb2313e4d8bc4aca5e41fc56d
|
| 3 |
+
size 1030144124
|
models/embeddings/monolingual/cdo_128d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 5890
|
| 15 |
}
|
models/embeddings/monolingual/cdo_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86a7dce9574a1b349e8220d6f822717130a1b46d2b0974b780a9d477774160c8
|
| 3 |
+
size 257620604
|
models/embeddings/monolingual/cdo_32d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 5890
|
| 15 |
}
|
models/embeddings/monolingual/cdo_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ff1b4674bfe38edab895e88af4342b16a3f9789a7c958abf6e47054845cd6aa4
|
| 3 |
+
size 515128444
|
models/embeddings/monolingual/cdo_64d_metadata.json
CHANGED
|
@@ -11,5 +11,5 @@
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
-
"vocab_size":
|
| 15 |
}
|
|
|
|
| 11 |
"encoding_method": "rope",
|
| 12 |
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 5890
|
| 15 |
}
|
models/subword_markov/cdo_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3da6052e82e4c697f086d6afaa06670505468ff51dcf1a7340b522bf070015e6
|
| 3 |
+
size 592109
|
models/subword_markov/cdo_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 25650,
|
| 6 |
+
"total_transitions": 2221841
|
| 7 |
}
|
models/subword_markov/cdo_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3bb9ad24e188fc52306a7642dd496ab7d8532ccf33c025d3f7d1c4af1d6ff510
|
| 3 |
+
size 1367425
|
models/subword_markov/cdo_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 74833,
|
| 6 |
+
"total_transitions": 2211413
|
| 7 |
}
|
models/subword_markov/cdo_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0886f92da1dc62701890944aa0b1e24c9dcf37f74793e507af30e30779e26484
|
| 3 |
+
size 2419564
|
models/subword_markov/cdo_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 133597,
|
| 6 |
+
"total_transitions": 2200985
|
| 7 |
}
|
models/subword_markov/cdo_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f074b6b52183d155642e3893513a5b825b81d8e1f3470db88e8b5a1d13cc8a28
|
| 3 |
+
size 3936769
|
models/subword_markov/cdo_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 225426,
|
| 6 |
+
"total_transitions": 2190557
|
| 7 |
}
|
models/subword_ngram/cdo_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cd4b2592803a4c0a58278e42cfcc15e90b5e81feb82f8a0d64046e6d145b1ab8
|
| 3 |
+
size 93344
|
models/subword_ngram/cdo_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_ngrams": 6920,
|
| 6 |
+
"total_ngrams": 2221841
|
| 7 |
}
|
models/subword_ngram/cdo_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f80cd1c950fefb1ab46a416d8d95323ac4dc6c0e6c4912368a62bf620aa23f96
|
| 3 |
+
size 290909
|
models/subword_ngram/cdo_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_ngrams": 21022,
|
| 6 |
+
"total_ngrams": 2211413
|
| 7 |
}
|
models/subword_ngram/cdo_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df22974458699648ecdec9e69b43207c159d18dee62b39b3567352430145f9ac
|
| 3 |
+
size 904230
|
models/subword_ngram/cdo_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_ngrams": 69190,
|
| 6 |
+
"total_ngrams": 2200985
|
| 7 |
}
|
models/subword_ngram/cdo_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fa71ec0b3930bcdbc6ad1d120e08effe3a41602937f54280ae259ede5e07dd4a
|
| 3 |
+
size 1399844
|
models/subword_ngram/cdo_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "cdo",
|
| 5 |
+
"unique_ngrams": 106632,
|
| 6 |
+
"total_ngrams": 2190557
|
| 7 |
+
}
|
models/tokenizer/cdo_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1edb0f78c51e82af1aa3bd0048f32afb41dc8b1283e02f6ddf91540c4862694d
|
| 3 |
+
size 659360
|
models/tokenizer/cdo_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/cdo_tokenizer_64k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:67f7d92ddf85241d2e9badbee50f3b13e912420e37030ac222e16cc3f0c3a97e
|
| 3 |
+
size 1253153
|
models/tokenizer/cdo_tokenizer_64k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/cdo_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:372bfa68c5bd35d0af5617452462cbedcbf3c7aacdf2835c65228f95b19add52
|
| 3 |
+
size 162642
|
models/vocabulary/cdo_vocabulary_metadata.json
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "cdo",
|
| 3 |
-
"vocabulary_size":
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
-
"type_token_ratio": 0.
|
| 7 |
"coverage": {
|
| 8 |
-
"top_100": 0.
|
| 9 |
-
"top_1000": 0.
|
| 10 |
-
"top_5000": 0.
|
| 11 |
-
"top_10000": 0.
|
| 12 |
},
|
| 13 |
-
"hapax_count":
|
| 14 |
-
"hapax_ratio": 0.
|
| 15 |
-
"total_documents":
|
| 16 |
}
|
| 17 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "cdo",
|
| 3 |
+
"vocabulary_size": 9566,
|
| 4 |
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.06128859968851162,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.49938436197884817,
|
| 9 |
+
"top_1000": 0.8793349478542365,
|
| 10 |
+
"top_5000": 0.9390661056614236,
|
| 11 |
+
"top_10000": 0.9590967652502915
|
| 12 |
},
|
| 13 |
+
"hapax_count": 20499,
|
| 14 |
+
"hapax_ratio": 0.6818227174455347,
|
| 15 |
+
"total_documents": 10428
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/cdo_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a594cf868f038a4349e56316d6ace7758633c37de5bff30cb3e48c189510cd01
|
| 3 |
+
size 1374994
|
models/word_markov/cdo_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 29717,
|
| 6 |
+
"total_transitions": 480120
|
| 7 |
}
|
models/word_markov/cdo_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6174989127c033bc7a8052470160130dcaaa4c7286e94049aa162170de1a6bd4
|
| 3 |
+
size 3125934
|
models/word_markov/cdo_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 139964,
|
| 6 |
+
"total_transitions": 469692
|
| 7 |
}
|
models/word_markov/cdo_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71ce6d10ada60379f7a9a20207ebf75b18557cd4f0f56e6350995d6c9b418296
|
| 3 |
+
size 4909036
|
models/word_markov/cdo_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 250754,
|
| 6 |
+
"total_transitions": 459264
|
| 7 |
}
|
models/word_markov/cdo_markov_ctx4_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ca89a77dda70cd4580eaecc3797e7cb056289301d3f778429f14c4af0137ae4b
|
| 3 |
+
size 6024496
|
models/word_markov/cdo_markov_ctx4_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "cdo",
|
| 5 |
+
"unique_contexts": 303909,
|
| 6 |
+
"total_transitions": 448836
|
| 7 |
}
|