omarkamali commited on
Commit
a6db3d4
·
verified ·
1 Parent(s): f777518

Upload all models and assets for ch (20251001)

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +278 -121
  2. models/embeddings/monolingual/ch_128d.bin +2 -2
  3. models/embeddings/monolingual/ch_128d_metadata.json +5 -3
  4. models/embeddings/monolingual/ch_32d.bin +2 -2
  5. models/embeddings/monolingual/ch_32d_metadata.json +5 -3
  6. models/embeddings/monolingual/ch_64d.bin +2 -2
  7. models/embeddings/monolingual/ch_64d_metadata.json +5 -3
  8. models/subword_markov/ch_markov_ctx1_subword.parquet +2 -2
  9. models/subword_markov/ch_markov_ctx1_subword_metadata.json +2 -2
  10. models/subword_markov/ch_markov_ctx2_subword.parquet +2 -2
  11. models/subword_markov/ch_markov_ctx2_subword_metadata.json +2 -2
  12. models/subword_markov/ch_markov_ctx3_subword.parquet +2 -2
  13. models/subword_markov/ch_markov_ctx3_subword_metadata.json +2 -2
  14. models/subword_markov/ch_markov_ctx4_subword.parquet +2 -2
  15. models/subword_markov/ch_markov_ctx4_subword_metadata.json +2 -2
  16. models/subword_ngram/ch_2gram_subword.parquet +2 -2
  17. models/subword_ngram/ch_2gram_subword_metadata.json +2 -2
  18. models/subword_ngram/ch_3gram_subword.parquet +2 -2
  19. models/subword_ngram/ch_3gram_subword_metadata.json +2 -2
  20. models/subword_ngram/ch_4gram_subword.parquet +2 -2
  21. models/subword_ngram/ch_4gram_subword_metadata.json +2 -2
  22. models/tokenizer/ch_tokenizer_16k.model +2 -2
  23. models/tokenizer/ch_tokenizer_16k.vocab +0 -0
  24. models/tokenizer/ch_tokenizer_8k.model +2 -2
  25. models/tokenizer/ch_tokenizer_8k.vocab +0 -0
  26. models/vocabulary/ch_vocabulary.parquet +2 -2
  27. models/vocabulary/ch_vocabulary_metadata.json +9 -8
  28. models/word_markov/ch_markov_ctx1_word.parquet +2 -2
  29. models/word_markov/ch_markov_ctx1_word_metadata.json +2 -2
  30. models/word_markov/ch_markov_ctx2_word.parquet +2 -2
  31. models/word_markov/ch_markov_ctx2_word_metadata.json +2 -2
  32. models/word_markov/ch_markov_ctx3_word.parquet +2 -2
  33. models/word_markov/ch_markov_ctx3_word_metadata.json +2 -2
  34. models/word_markov/ch_markov_ctx4_word.parquet +2 -2
  35. models/word_markov/ch_markov_ctx4_word_metadata.json +2 -2
  36. models/word_ngram/ch_2gram_word.parquet +2 -2
  37. models/word_ngram/ch_2gram_word_metadata.json +2 -2
  38. models/word_ngram/ch_3gram_word.parquet +2 -2
  39. models/word_ngram/ch_3gram_word_metadata.json +2 -2
  40. models/word_ngram/ch_4gram_word.parquet +2 -2
  41. models/word_ngram/ch_4gram_word_metadata.json +2 -2
  42. visualizations/embedding_isotropy.png +0 -0
  43. visualizations/embedding_norms.png +0 -0
  44. visualizations/embedding_similarity.png +2 -2
  45. visualizations/markov_branching.png +0 -0
  46. visualizations/markov_contexts.png +0 -0
  47. visualizations/markov_entropy.png +0 -0
  48. visualizations/model_sizes.png +0 -0
  49. visualizations/ngram_coverage.png +0 -0
  50. visualizations/ngram_entropy.png +0 -0
README.md CHANGED
@@ -23,14 +23,14 @@ dataset_info:
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
- value: 4.113
27
  - name: best_isotropy
28
  type: isotropy
29
- value: 0.0314
30
  - name: vocabulary_size
31
  type: vocab
32
- value: 2085
33
- generated: 2025-12-28
34
  ---
35
 
36
  # CH - Wikilangs Models
@@ -44,12 +44,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
- - N-gram models (2, 3, 4-gram)
48
- - Markov chains (context of 1, 2, 3 and 4)
49
  - Subword N-gram and Markov chains
50
- - Embeddings in various sizes and dimensions
51
  - Language Vocabulary
52
  - Language Statistics
 
53
  ![Performance Dashboard](visualizations/performance_dashboard.png)
54
 
55
  ### Analysis and Evaluation
@@ -59,7 +60,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
59
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
60
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
61
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
62
- - [6. Summary & Recommendations](#6-summary--recommendations)
 
63
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
64
  - [Visualizations Index](#visualizations-index)
65
 
@@ -68,44 +70,49 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
68
 
69
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
70
 
 
 
 
 
 
 
71
  ### Results
72
 
73
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
74
  |------------|-------------|---------------|----------|--------------|
75
- | **8k** | 3.833x | 3.79 | 0.1107% | 46,087 |
76
- | **16k** | 4.113x 🏆 | 4.07 | 0.1187% | 42,948 |
77
 
78
  ### Tokenization Examples
79
 
80
  Below are sample sentences tokenized with each vocabulary size:
81
 
82
- **Sample 1:** `+ 125px 125px 300px
83
- Bulgaria, capitat Sofia.`
84
 
85
  | Vocab | Tokens | Count |
86
  |-------|--------|-------|
87
- | 8k | `▁+ 1 2 5 px1 2 5 ... (+12 more)` | 22 |
88
- | 16k | `▁+1 2 5 px1 2 5 ... (+11 more)` | 21 |
89
 
90
- **Sample 2:** `Giacomo Puccini (1858, Lucca, Italia - 1924, Bruselas, Belgica), un danderu åtmo...`
91
 
92
  | Vocab | Tokens | Count |
93
  |-------|--------|-------|
94
- | 8k | `▁gi a com o pu ccini( 1 8 5 ... (+29 more)` | 39 |
95
- | 16k | `▁giacomo ▁puccini( 1 8 5 8 ,lucca , ... (+25 more)` | 35 |
96
 
97
- **Sample 3:** `I Sisteman Laibirihan Pupbleko Guåhan este na ufsiåt na sistema para i islan Guå...`
98
 
99
  | Vocab | Tokens | Count |
100
  |-------|--------|-------|
101
- | 8k | `▁isisteman ▁lai birihan pupble ko ▁guåhanestenaufsiåt ... (+7 more)` | 17 |
102
- | 16k | `▁isisteman ▁laibirihanpupbleko ▁guåhan ▁estenaufsiåtna ▁sistema ... (+5 more)` | 15 |
103
 
104
 
105
  ### Key Findings
106
 
107
- - **Best Compression:** 16k achieves 4.113x compression
108
- - **Lowest UNK Rate:** 8k with 0.1107% unknown tokens
109
  - **Trade-off:** Larger vocabularies improve compression but increase model size
110
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
111
 
@@ -114,57 +121,89 @@ Bulgaria, capitat Sofia.`
114
 
115
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
116
 
 
 
117
  ![N-gram Coverage](visualizations/ngram_coverage.png)
118
 
119
  ### Results
120
 
121
- | N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
122
- |--------|------------|---------|----------------|------------------|-------------------|
123
- | **2-gram** | 304 🏆 | 8.25 | 836 | 61.4% | 100.0% |
124
- | **2-gram** | 262 🏆 | 8.03 | 1,028 | 68.2% | 99.9% |
125
- | **3-gram** | 367 | 8.52 | 1,276 | 58.0% | 93.7% |
126
- | **3-gram** | 1,384 | 10.43 | 5,255 | 35.7% | 78.3% |
127
- | **4-gram** | 472 | 8.88 | 1,937 | 54.6% | 83.8% |
128
- | **4-gram** | 3,626 | 11.82 | 13,909 | 27.2% | 58.1% |
129
 
130
  ### Top 5 N-grams by Size
131
 
132
- **2-grams:**
133
 
134
  | Rank | N-gram | Count |
135
  |------|--------|-------|
136
- | 1 | `katigoria :` | 774 |
137
- | 2 | `estados unidos` | 443 |
138
- | 3 | `. katigoria` | 411 |
139
- | 4 | `i sengsong` | 364 |
140
- | 5 | `. guåha` | 328 |
141
 
142
- **3-grams:**
143
 
144
  | Rank | N-gram | Count |
145
  |------|--------|-------|
146
- | 1 | `. katigoria :` | 411 |
147
- | 2 | `nu i senso` | 308 |
148
  | 3 | `na populasion i` | 304 |
149
- | 4 | `na tataogues na` | 304 |
150
- | 5 | `tataogues na populasion` | 304 |
151
 
152
- **4-grams:**
153
 
154
  | Rank | N-gram | Count |
155
  |------|--------|-------|
156
  | 1 | `na tataogues na populasion` | 304 |
157
  | 2 | `tataogues na populasion i` | 303 |
158
- | 3 | `i sengsong nu i` | 299 |
159
- | 4 | `populasion i sengsong nu` | 299 |
160
- | 5 | `na populasion i sengsong` | 299 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
 
162
 
163
  ### Key Findings
164
 
165
- - **Best Perplexity:** 2-gram with 262
166
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
167
- - **Coverage:** Top-1000 patterns cover ~58% of corpus
168
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
169
 
170
  ---
@@ -172,55 +211,86 @@ Bulgaria, capitat Sofia.`
172
 
173
  ![Markov Entropy](visualizations/markov_entropy.png)
174
 
 
 
175
  ![Markov Branching](visualizations/markov_branching.png)
176
 
177
  ### Results
178
 
179
- | Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
180
- |---------|-------------|------------|------------------|-----------------|----------------|
181
- | **1** | 0.4437 | 1.360 | 2.83 | 5,950 | 55.6% |
182
- | **1** | 1.1631 | 2.239 | 8.71 | 235 | 0.0% |
183
- | **2** | 0.1938 | 1.144 | 1.42 | 16,706 | 80.6% |
184
- | **2** | 1.1662 | 2.244 | 5.45 | 2,042 | 0.0% |
185
- | **3** | 0.0836 | 1.060 | 1.14 | 23,561 | 91.6% |
186
- | **3** | 0.7209 | 1.648 | 2.73 | 11,105 | 27.9% |
187
- | **4** | 0.0382 🏆 | 1.027 | 1.06 | 26,653 | 96.2% |
188
- | **4** | 0.3731 🏆 | 1.295 | 1.67 | 30,233 | 62.7% |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
189
 
190
- ### Generated Text Samples
191
 
192
- Below are text samples generated from each Markov chain model:
 
 
193
 
194
  **Context Size 1:**
195
 
196
- 1. `i sengsong dong hoi . guåha 1 ] yan i isla ni mineddong - spike barker`
197
- 2. `. guåha 103 , un lepblo - ña , krasnodar ) minisengsóng / web . katigoria`
198
- 3. `' huyong as a ' gue ' aotoridat para otro na populasion i senso 2010 .`
199
 
200
  **Context Size 2:**
201
 
202
- 1. `katigoria : dangkulo katigoria : chile`
203
- 2. `. katigoria : dangkulo katigoria : china katigoria : yeogråfia katigoria : dangkulo katigoria : esta...`
204
- 3. `i sengsong nu i senso 2010 . katigoria : estados unidos . guåha 4 154 200 na`
205
 
206
  **Context Size 3:**
207
 
208
- 1. `. katigoria : tiempo`
209
- 2. `nu i senso 2000 . katigoria : dangkulo katigoria : estados unidos`
210
- 3. `na tataogues na populasion i sengsong nu i senso 2016 ( ine ) . katigoria : dangkulo katigoria`
211
 
212
  **Context Size 4:**
213
 
214
- 1. `na tataogues na populasion i sengsong nu i senso 2010 . katigoria : dangkulo katigoria : estados uni...`
215
- 2. `tataogues na populasion i sengsong nu i senso 2012 . katigoria : chapan katigoria : dangkulo`
216
- 3. `i sengsong nu i senso 2014 . katigoria : dangkulo katigoria : estados unidos`
217
 
218
 
219
  ### Key Findings
220
 
221
- - **Best Predictability:** Context-4 with 96.2% predictability
222
  - **Branching Factor:** Decreases with context size (more deterministic)
223
- - **Memory Trade-off:** Larger contexts require more storage (30,233 contexts)
224
  - **Recommendation:** Context-3 or Context-4 for text generation
225
 
226
  ---
@@ -236,64 +306,64 @@ Below are text samples generated from each Markov chain model:
236
 
237
  | Metric | Value |
238
  |--------|-------|
239
- | Vocabulary Size | 2,085 |
240
- | Total Tokens | 25,270 |
241
- | Mean Frequency | 12.12 |
242
  | Median Frequency | 3 |
243
- | Frequency Std Dev | 73.61 |
244
 
245
  ### Most Common Words
246
 
247
  | Rank | Word | Frequency |
248
  |------|------|-----------|
249
- | 1 | i | 2,329 |
250
- | 2 | na | 1,512 |
251
- | 3 | gi | 982 |
252
- | 4 | katigoria | 774 |
253
- | 5 | estados | 459 |
254
- | 6 | unidos | 448 |
255
- | 7 | yan | 440 |
256
- | 8 | sengsong | 370 |
257
- | 9 | guåha | 356 |
258
- | 10 | ni | 339 |
259
 
260
  ### Least Common Words (from vocabulary)
261
 
262
  | Rank | Word | Frequency |
263
  |------|------|-----------|
264
- | 1 | säger | 2 |
265
- | 2 | ett | 2 |
266
- | 3 | | 2 |
267
- | 4 | du | 2 |
268
- | 5 | skate | 2 |
269
- | 6 | med | 2 |
270
- | 7 | smaskiga | 2 |
271
- | 8 | löken | 2 |
272
- | 9 | tychy | 2 |
273
- | 10 | museon | 2 |
274
 
275
  ### Zipf's Law Analysis
276
 
277
  | Metric | Value |
278
  |--------|-------|
279
- | Zipf Coefficient | 0.9652 |
280
- | R² (Goodness of Fit) | 0.986639 |
281
  | Adherence Quality | **excellent** |
282
 
283
  ### Coverage Analysis
284
 
285
  | Top N Words | Coverage |
286
  |-------------|----------|
287
- | Top 100 | 62.8% |
288
- | Top 1,000 | 90.4% |
289
  | Top 5,000 | 0.0% |
290
  | Top 10,000 | 0.0% |
291
 
292
  ### Key Findings
293
 
294
- - **Zipf Compliance:** R²=0.9866 indicates excellent adherence to Zipf's law
295
- - **High Frequency Dominance:** Top 100 words cover 62.8% of corpus
296
- - **Long Tail:** -7,915 words needed for remaining 100.0% coverage
297
 
298
  ---
299
  ## 5. Word Embeddings Evaluation
@@ -306,24 +376,108 @@ Below are text samples generated from each Markov chain model:
306
 
307
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
308
 
309
- ### Model Comparison
310
 
311
- | Model | Vocab Size | Dimension | Avg Norm | Std Norm | Isotropy |
312
- |-------|------------|-----------|----------|----------|----------|
313
- | **mono_32d** | 546 | 32 | 1.807 | 0.436 | 0.0314 🏆 |
314
- | **mono_64d** | 546 | 64 | 1.773 | 0.400 | 0.0096 |
315
- | **mono_128d** | 546 | 128 | 1.779 | 0.401 | 0.0020 |
316
- | **embeddings_enhanced** | 0 | 0 | 0.000 | 0.000 | 0.0000 |
 
 
 
 
 
 
317
 
318
  ### Key Findings
319
 
320
- - **Best Isotropy:** mono_32d with 0.0314 (more uniform distribution)
321
- - **Dimension Trade-off:** Higher dimensions capture more semantics but reduce isotropy
322
- - **Vocabulary Coverage:** All models cover 546 words
323
- - **Recommendation:** 100d for balanced semantic capture and efficiency
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
324
 
325
  ---
326
- ## 6. Summary & Recommendations
327
 
328
  ![Performance Dashboard](visualizations/performance_dashboard.png)
329
 
@@ -331,11 +485,12 @@ Below are text samples generated from each Markov chain model:
331
 
332
  | Component | Recommended | Rationale |
333
  |-----------|-------------|-----------|
334
- | Tokenizer | **32k BPE** | Best compression (4.11x) with low UNK rate |
335
- | N-gram | **5-gram** | Lowest perplexity (262) |
336
- | Markov | **Context-4** | Highest predictability (96.2%) |
337
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
338
 
 
339
  ---
340
  ## Appendix: Metrics Glossary & Interpretation Guide
341
 
@@ -525,7 +680,8 @@ If you use these models in your research, please cite:
525
  author = {Kamali, Omar},
526
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
527
  year = {2025},
528
- publisher = {HuggingFace},
 
529
  url = {https://huggingface.co/wikilangs}
530
  institution = {Omneity Labs}
531
  }
@@ -541,7 +697,8 @@ MIT License - Free for academic and commercial use.
541
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
542
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
543
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
 
544
  ---
545
  *Generated by Wikilangs Models Pipeline*
546
 
547
- *Report Date: 2025-12-28 22:40:52*
 
23
  metrics:
24
  - name: best_compression_ratio
25
  type: compression
26
+ value: 4.243
27
  - name: best_isotropy
28
  type: isotropy
29
+ value: 0.0518
30
  - name: vocabulary_size
31
  type: vocab
32
+ value: 0
33
+ generated: 2026-01-03
34
  ---
35
 
36
  # CH - Wikilangs Models
 
44
  ### Models & Assets
45
 
46
  - Tokenizers (8k, 16k, 32k, 64k)
47
+ - N-gram models (2, 3, 4, 5-gram)
48
+ - Markov chains (context of 1, 2, 3, 4 and 5)
49
  - Subword N-gram and Markov chains
50
+ - Embeddings in various sizes and dimensions (aligned and unaligned)
51
  - Language Vocabulary
52
  - Language Statistics
53
+
54
  ![Performance Dashboard](visualizations/performance_dashboard.png)
55
 
56
  ### Analysis and Evaluation
 
60
  - [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
61
  - [4. Vocabulary Analysis](#4-vocabulary-analysis)
62
  - [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
63
+ - [6. Morphological Analysis (Experimental)](#6-morphological-analysis)
64
+ - [7. Summary & Recommendations](#7-summary--recommendations)
65
  - [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
66
  - [Visualizations Index](#visualizations-index)
67
 
 
70
 
71
  ![Tokenizer Compression](visualizations/tokenizer_compression.png)
72
 
73
+ ![Tokenizer Fertility](visualizations/tokenizer_fertility.png)
74
+
75
+ ![Tokenizer OOV](visualizations/tokenizer_oov.png)
76
+
77
+ ![Total Tokens](visualizations/tokenizer_total_tokens.png)
78
+
79
  ### Results
80
 
81
  | Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
82
  |------------|-------------|---------------|----------|--------------|
83
+ | **8k** | 3.977x | 3.99 | 0.1019% | 38,272 |
84
+ | **16k** | 4.243x 🏆 | 4.26 | 0.1087% | 35,871 |
85
 
86
  ### Tokenization Examples
87
 
88
  Below are sample sentences tokenized with each vocabulary size:
89
 
90
+ **Sample 1:** `Doerun, nasong-song gi Estados Unidos. Guåha 774 na tataogues na populasion i se...`
 
91
 
92
  | Vocab | Tokens | Count |
93
  |-------|--------|-------|
94
+ | 8k | `▁do er un , ▁nasong - song gi ▁estados ▁unidos ... (+16 more)` | 26 |
95
+ | 16k | `▁doerun , nasong - song ▁gi ▁estadosunidos . ▁guåha ... (+14 more)` | 24 |
96
 
97
+ **Sample 2:** `Newhalen, nasong-song gi Estados Unidos. Guåha 190 na tataogues na populasion i ...`
98
 
99
  | Vocab | Tokens | Count |
100
  |-------|--------|-------|
101
+ | 8k | `▁newha len ,nasong - song gi ▁estados ▁unidos . ... (+15 more)` | 25 |
102
+ | 16k | `▁newhalen ,nasong - song ▁gi ▁estados ▁unidos . guåha ... (+14 more)` | 24 |
103
 
104
+ **Sample 3:** `Larsen Bay, nasong-song gi Estados Unidos. Guåha 87 na tataogues na populasion i...`
105
 
106
  | Vocab | Tokens | Count |
107
  |-------|--------|-------|
108
+ | 8k | `▁larsenbay ,nasong - songgiestadosunidos . ... (+14 more)` | 24 |
109
+ | 16k | `▁larsenbay ,nasong - songgiestadosunidos . ... (+14 more)` | 24 |
110
 
111
 
112
  ### Key Findings
113
 
114
+ - **Best Compression:** 16k achieves 4.243x compression
115
+ - **Lowest UNK Rate:** 8k with 0.1019% unknown tokens
116
  - **Trade-off:** Larger vocabularies improve compression but increase model size
117
  - **Recommendation:** 32k vocabulary provides optimal balance for production use
118
 
 
121
 
122
  ![N-gram Perplexity](visualizations/ngram_perplexity.png)
123
 
124
+ ![N-gram Unique](visualizations/ngram_unique.png)
125
+
126
  ![N-gram Coverage](visualizations/ngram_coverage.png)
127
 
128
  ### Results
129
 
130
+ | N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
131
+ |--------|---------|------------|---------|----------------|------------------|-------------------|
132
+ | **2-gram** | Word | 181 | 7.50 | 496 | 68.1% | 100.0% |
133
+ | **2-gram** | Subword | 228 | 7.83 | 869 | 71.1% | 100.0% |
134
+ | **3-gram** | Word | 134 🏆 | 7.07 | 582 | 70.7% | 100.0% |
135
+ | **3-gram** | Subword | 1,281 | 10.32 | 4,543 | 36.5% | 79.7% |
136
+ | **4-gram** | Word | 158 | 7.30 | 842 | 66.6% | 100.0% |
137
+ | **4-gram** | Subword | 3,667 | 11.84 | 12,416 | 26.2% | 57.0% |
138
 
139
  ### Top 5 N-grams by Size
140
 
141
+ **2-grams (Word):**
142
 
143
  | Rank | N-gram | Count |
144
  |------|--------|-------|
145
+ | 1 | `i sengsong` | 364 |
146
+ | 2 | `nu i` | 329 |
147
+ | 3 | `i senso` | 310 |
148
+ | 4 | `na populasion` | 309 |
149
+ | 5 | `populasion i` | 308 |
150
 
151
+ **3-grams (Word):**
152
 
153
  | Rank | N-gram | Count |
154
  |------|--------|-------|
155
+ | 1 | `nu i senso` | 308 |
156
+ | 2 | `na tataogues na` | 304 |
157
  | 3 | `na populasion i` | 304 |
158
+ | 4 | `tataogues na populasion` | 304 |
159
+ | 5 | `i sengsong nu` | 299 |
160
 
161
+ **4-grams (Word):**
162
 
163
  | Rank | N-gram | Count |
164
  |------|--------|-------|
165
  | 1 | `na tataogues na populasion` | 304 |
166
  | 2 | `tataogues na populasion i` | 303 |
167
+ | 3 | `na populasion i sengsong` | 299 |
168
+ | 4 | `sengsong nu i senso` | 299 |
169
+ | 5 | `populasion i sengsong nu` | 299 |
170
+
171
+ **2-grams (Subword):**
172
+
173
+ | Rank | N-gram | Count |
174
+ |------|--------|-------|
175
+ | 1 | `a _` | 4,934 |
176
+ | 2 | `i _` | 4,206 |
177
+ | 3 | `n a` | 2,921 |
178
+ | 4 | `a n` | 2,812 |
179
+ | 5 | `_ i` | 2,769 |
180
+
181
+ **3-grams (Subword):**
182
+
183
+ | Rank | N-gram | Count |
184
+ |------|--------|-------|
185
+ | 1 | `_ i _` | 2,254 |
186
+ | 2 | `_ n a` | 1,827 |
187
+ | 3 | `n a _` | 1,562 |
188
+ | 4 | `_ g i` | 1,306 |
189
+ | 5 | `_ m a` | 1,153 |
190
+
191
+ **4-grams (Subword):**
192
+
193
+ | Rank | N-gram | Count |
194
+ |------|--------|-------|
195
+ | 1 | `_ n a _` | 1,359 |
196
+ | 2 | `_ g i _` | 957 |
197
+ | 3 | `s o n g` | 950 |
198
+ | 4 | `_ i _ s` | 792 |
199
+ | 5 | `o n g _` | 757 |
200
 
201
 
202
  ### Key Findings
203
 
204
+ - **Best Perplexity:** 3-gram (word) with 134
205
  - **Entropy Trend:** Decreases with larger n-grams (more predictable)
206
+ - **Coverage:** Top-1000 patterns cover ~57% of corpus
207
  - **Recommendation:** 4-gram or 5-gram for best predictive performance
208
 
209
  ---
 
211
 
212
  ![Markov Entropy](visualizations/markov_entropy.png)
213
 
214
+ ![Markov Contexts](visualizations/markov_contexts.png)
215
+
216
  ![Markov Branching](visualizations/markov_branching.png)
217
 
218
  ### Results
219
 
220
+ | Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
221
+ |---------|---------|-------------|------------|------------------|-----------------|----------------|
222
+ | **1** | Word | 0.4921 | 1.406 | 2.63 | 5,466 | 50.8% |
223
+ | **1** | Subword | 1.0948 | 2.136 | 7.84 | 226 | 0.0% |
224
+ | **2** | Word | 0.1702 | 1.125 | 1.32 | 14,200 | 83.0% |
225
+ | **2** | Subword | 1.1295 | 2.188 | 5.29 | 1,769 | 0.0% |
226
+ | **3** | Word | 0.0593 | 1.042 | 1.09 | 18,551 | 94.1% |
227
+ | **3** | Subword | 0.7380 | 1.668 | 2.81 | 9,336 | 26.2% |
228
+ | **4** | Word | 0.0213 🏆 | 1.015 | 1.03 | 19,968 | 97.9% |
229
+ | **4** | Subword | 0.3911 | 1.311 | 1.72 | 26,134 | 60.9% |
230
+
231
+ ### Generated Text Samples (Word-based)
232
+
233
+ Below are text samples generated from each word-based Markov chain model:
234
+
235
+ **Context Size 1:**
236
+
237
+ 1. `i islan guåhan si nanå ña ti ha nå an i senso ine giya guåhan i`
238
+ 2. `na tataogues na petsona siha manma å ñao i kotturan ñiha gi i dos botkan ni`
239
+ 3. `gi sankattan na populasion i mina tres manggimen tuba ginen i taotao ya ma ganna i`
240
+
241
+ **Context Size 2:**
242
+
243
+ 1. `i sengsong nu i senso unidos`
244
+ 2. `nu i proteksion i tano jesukristo gi fecha ni 25 disiembre`
245
+ 3. `populasion i sengsong nu i senso unidos`
246
+
247
+ **Context Size 3:**
248
+
249
+ 1. `na populasion i sengsong nu i senso unidos`
250
+ 2. `na tataogues na populasion i sengsong nu i senso unidos`
251
+ 3. `tataogues na populasion i sengsong nu i senso unidos`
252
+
253
+ **Context Size 4:**
254
+
255
+ 1. `na tataogues na populasion i sengsong nu i senso unidos`
256
+ 2. `tataogues na populasion i sengsong nu i senso unidos`
257
+ 3. `i sengsong nu i senso unidos`
258
 
 
259
 
260
+ ### Generated Text Samples (Subword-based)
261
+
262
+ Below are text samples generated from each subword-based Markov chain model:
263
 
264
  **Context Size 1:**
265
 
266
+ 1. `_eyanso'_giterge`
267
+ 2. `asipa_dinakoso_m`
268
+ 3. `nsi_nandiki_u_pa`
269
 
270
  **Context Size 2:**
271
 
272
+ 1. `a_åchokkas_na_kri`
273
+ 2. `i_ta_magu_gi_i_ha`
274
+ 3. `na'neho_"thunidos`
275
 
276
  **Context Size 3:**
277
 
278
+ 1. `_i_caste_pies_dang`
279
+ 2. `_na_populasifiku)_`
280
+ 3. `na_tan_atten-ñiha_`
281
 
282
  **Context Size 4:**
283
 
284
+ 1. `_na_po'lu_na_aterit`
285
+ 2. `_gi_estorio_ni'_kad`
286
+ 3. `song-song_nu_i_akti`
287
 
288
 
289
  ### Key Findings
290
 
291
+ - **Best Predictability:** Context-4 (word) with 97.9% predictability
292
  - **Branching Factor:** Decreases with context size (more deterministic)
293
+ - **Memory Trade-off:** Larger contexts require more storage (26,134 contexts)
294
  - **Recommendation:** Context-3 or Context-4 for text generation
295
 
296
  ---
 
306
 
307
  | Metric | Value |
308
  |--------|-------|
309
+ | Vocabulary Size | 1,918 |
310
+ | Total Tokens | 22,697 |
311
+ | Mean Frequency | 11.83 |
312
  | Median Frequency | 3 |
313
+ | Frequency Std Dev | 73.74 |
314
 
315
  ### Most Common Words
316
 
317
  | Rank | Word | Frequency |
318
  |------|------|-----------|
319
+ | 1 | i | 2,327 |
320
+ | 2 | na | 1,513 |
321
+ | 3 | gi | 972 |
322
+ | 4 | unidos | 448 |
323
+ | 5 | yan | 436 |
324
+ | 6 | sengsong | 370 |
325
+ | 7 | guåha | 356 |
326
+ | 8 | ni | 339 |
327
+ | 9 | nu | 335 |
328
+ | 10 | populasion | 333 |
329
 
330
  ### Least Common Words (from vocabulary)
331
 
332
  | Rank | Word | Frequency |
333
  |------|------|-----------|
334
+ | 1 | av | 2 |
335
+ | 2 | berit | 2 |
336
+ | 3 | larsson | 2 |
337
+ | 4 | hemliga | 2 |
338
+ | 5 | tycker | 2 |
339
+ | 6 | att | 2 |
340
+ | 7 | var | 2 |
341
+ | 8 | rolig | 2 |
342
+ | 9 | ett | 2 |
343
+ | 10 | du | 2 |
344
 
345
  ### Zipf's Law Analysis
346
 
347
  | Metric | Value |
348
  |--------|-------|
349
+ | Zipf Coefficient | 0.9581 |
350
+ | R² (Goodness of Fit) | 0.986461 |
351
  | Adherence Quality | **excellent** |
352
 
353
  ### Coverage Analysis
354
 
355
  | Top N Words | Coverage |
356
  |-------------|----------|
357
+ | Top 100 | 63.1% |
358
+ | Top 1,000 | 91.3% |
359
  | Top 5,000 | 0.0% |
360
  | Top 10,000 | 0.0% |
361
 
362
  ### Key Findings
363
 
364
+ - **Zipf Compliance:** R²=0.9865 indicates excellent adherence to Zipf's law
365
+ - **High Frequency Dominance:** Top 100 words cover 63.1% of corpus
366
+ - **Long Tail:** -8,082 words needed for remaining 100.0% coverage
367
 
368
  ---
369
  ## 5. Word Embeddings Evaluation
 
376
 
377
  ![t-SNE Sentences](visualizations/tsne_sentences.png)
378
 
 
379
 
380
+ ### 5.1 Cross-Lingual Alignment
381
+
382
+ > *Note: Multilingual alignment visualization not available for this language.*
383
+
384
+
385
+ ### 5.2 Model Comparison
386
+
387
+ | Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
388
+ |-------|-----------|----------|------------------|---------------|----------------|
389
+ | **mono_32d** | 32 | 0.0518 🏆 | 0.6801 | N/A | N/A |
390
+ | **mono_64d** | 64 | 0.0071 | 0.8792 | N/A | N/A |
391
+ | **mono_128d** | 128 | 0.0017 | 0.8741 | N/A | N/A |
392
 
393
  ### Key Findings
394
 
395
+ - **Best Isotropy:** mono_32d with 0.0518 (more uniform distribution)
396
+ - **Semantic Density:** Average pairwise similarity of 0.8111. Lower values indicate better semantic separation.
397
+ - **Alignment Quality:** No aligned models evaluated in this run.
398
+ - **Recommendation:** 128d aligned for best cross-lingual performance
399
+
400
+ ---
401
+ ## 6. Morphological Analysis (Experimental)
402
+
403
+ > ⚠️ **Warning:** This language shows low morphological productivity. The statistical signals used for this analysis may be noisy or less reliable than for morphologically rich languages.
404
+
405
+ This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
406
+
407
+ ### 6.1 Productivity & Complexity
408
+
409
+ | Metric | Value | Interpretation | Recommendation |
410
+ |--------|-------|----------------|----------------|
411
+ | Productivity Index | **0.000** | Low morphological productivity | ⚠️ Likely unreliable |
412
+ | Idiomaticity Gap | **-1.000** | Low formulaic content | - |
413
+
414
+ ### 6.2 Affix Inventory (Productive Units)
415
+
416
+ These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
417
+
418
+ #### Productive Prefixes
419
+ | Prefix | Examples |
420
+ |--------|----------|
421
+ | `-ma` | matematika, matai, mansen |
422
+
423
+ #### Productive Suffixes
424
+ | Suffix | Examples |
425
+ |--------|----------|
426
+ | `-a` | matematika, kana, bånda |
427
+ | `-n` | sanhayan, monhayan, fan |
428
+ | `-on` | organisasion, aplikasion, adelanton |
429
+ | `-an` | sanhayan, monhayan, fan |
430
+ | `-ia` | bibliografia, termania, indonesia |
431
+ | `-ion` | organisasion, aplikasion, atministrasion |
432
+
433
+ ### 6.3 Bound Stems (Lexical Roots)
434
+
435
+ Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
436
+
437
+ *No significant bound stems detected.*
438
+
439
+
440
+ ### 6.4 Affix Compatibility (Co-occurrence)
441
+
442
+ This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
443
+
444
+ | Prefix | Suffix | Frequency | Examples |
445
+ |--------|--------|-----------|----------|
446
+ | `-ma` | `-a` | 17 words | matematika, manfa |
447
+ | `-ma` | `-n` | 13 words | mansen, mandarin |
448
+ | `-ma` | `-an` | 6 words | manguayan, man |
449
+ | `-ma` | `-on` | 4 words | matutuhon, madison |
450
+ | `-ma` | `-ia` | 1 words | malaysia, maria |
451
+
452
+ ### 6.5 Recursive Morpheme Segmentation
453
+
454
+ Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
455
+
456
+ | Word | Suggested Split | Confidence | Stem |
457
+ |------|-----------------|------------|------|
458
+ | makonsidera | **`ma-konsidera`** | 4.5 | `konsidera` |
459
+ | matutuhon | **`ma-tutuh-on`** | 3.0 | `tutuh` |
460
+ | manguayan | **`ma-nguay-an`** | 3.0 | `nguay` |
461
+ | pennsylvania | **`pennsylv-an-ia`** | 3.0 | `pennsylv` |
462
+ | manmatutuhon | **`ma-nmatutuh-on`** | 3.0 | `nmatutuh` |
463
+ | machulijan | **`ma-chulij-an`** | 3.0 | `chulij` |
464
+ | manofisinan | **`ma-nofisin-an`** | 3.0 | `nofisin` |
465
+ | masasangan | **`ma-sasang-an`** | 3.0 | `sasang` |
466
+ | matematika | **`ma-tematika`** | 1.5 | `tematika` |
467
+ | organisasion | **`organisas-ion`** | 1.5 | `organisas` |
468
+ | aplikasion | **`aplikas-ion`** | 1.5 | `aplikas` |
469
+ | adelanton | **`adelant-on`** | 1.5 | `adelant` |
470
+ | bibliografia | **`bibliograf-ia`** | 1.5 | `bibliograf` |
471
+ | manamerikanu | **`ma-namerikanu`** | 1.5 | `namerikanu` |
472
+ | indonesia | **`indones-ia`** | 1.5 | `indones` |
473
+
474
+ ### 6.6 Linguistic Interpretation
475
+
476
+ > **Automated Insight:**
477
+ The language CH appears to be more isolating or has a highly fixed vocabulary. Word-level models perform nearly as well as subword models, indicating fewer productive morphological processes.
478
 
479
  ---
480
+ ## 7. Summary & Recommendations
481
 
482
  ![Performance Dashboard](visualizations/performance_dashboard.png)
483
 
 
485
 
486
  | Component | Recommended | Rationale |
487
  |-----------|-------------|-----------|
488
+ | Tokenizer | **16k BPE** | Best compression (4.24x) |
489
+ | N-gram | **3-gram** | Lowest perplexity (134) |
490
+ | Markov | **Context-4** | Highest predictability (97.9%) |
491
  | Embeddings | **100d** | Balanced semantic capture and isotropy |
492
 
493
+
494
  ---
495
  ## Appendix: Metrics Glossary & Interpretation Guide
496
 
 
680
  author = {Kamali, Omar},
681
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
682
  year = {2025},
683
+ doi = {10.5281/zenodo.18073153},
684
+ publisher = {Zenodo},
685
  url = {https://huggingface.co/wikilangs}
686
  institution = {Omneity Labs}
687
  }
 
697
  - 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
698
  - 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
699
  - 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
700
+ - 🤝 Sponsor: [Featherless AI](https://featherless.ai)
701
  ---
702
  *Generated by Wikilangs Models Pipeline*
703
 
704
+ *Report Date: 2026-01-03 10:06:23*
models/embeddings/monolingual/ch_128d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c70139eede0356c2aeb600acc0358b3d5553ac4276060a02b299bcffe2777ed7
3
- size 1024568094
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0df9cc84b978b1e115c6cee71e84a836b069e938ed89ba0990d33fb6e76d469f
3
+ size 1024535659
models/embeddings/monolingual/ch_128d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 128,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 546
13
  }
 
3
  "dimension": 128,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 128
13
  },
14
+ "vocab_size": 515
15
  }
models/embeddings/monolingual/ch_32d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:f057607a3b0833c3df0ee72e3fe1c4413a523a5dd0469280f13475660f999d12
3
- size 256148766
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5ddf21da0a6cf2c7c20309473f6133a07aa8e95d376e57c53cba79dae0c66d67
3
+ size 256140139
models/embeddings/monolingual/ch_32d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 32,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 546
13
  }
 
3
  "dimension": 32,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 32
13
  },
14
+ "vocab_size": 515
15
  }
models/embeddings/monolingual/ch_64d.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:69ee5065092313be64cc01d2936ed7d6e432a293090c7622e103b54dd6831728
3
- size 512288542
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:765adc5bcc8f79ac3c37ad1e8f88947431aa2cfc778fa7b216fa71374b23bb88
3
+ size 512271979
models/embeddings/monolingual/ch_64d_metadata.json CHANGED
@@ -3,11 +3,13 @@
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
- "dim": 64,
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
- "epochs": 5
 
 
11
  },
12
- "vocab_size": 546
13
  }
 
3
  "dimension": 64,
4
  "version": "monolingual",
5
  "training_params": {
6
+ "algorithm": "skipgram",
7
  "min_count": 5,
8
  "window": 5,
9
  "negative": 5,
10
+ "epochs": 5,
11
+ "encoding_method": "rope",
12
+ "dim": 64
13
  },
14
+ "vocab_size": 515
15
  }
models/subword_markov/ch_markov_ctx1_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:2d8bcbadf13f8c04b3bf774db4566c21081c309daade48a05ab547c4d55019eb
3
- size 18449
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6da9b7f5e8c16da9d614a2d3c0d921e4219da4002fa71393d3c02e1a9f995e1
3
+ size 17474
models/subword_markov/ch_markov_ctx1_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_contexts": 235,
6
- "total_transitions": 176029
7
  }
 
2
  "context_size": 1,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_contexts": 226,
6
+ "total_transitions": 151624
7
  }
models/subword_markov/ch_markov_ctx2_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:392ca8b7bc544928287f25cc942dc9006c35872f09a7d9b575d39b713087ca72
3
- size 77639
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:264f038954ff6478301dcba734b78924744419ec3051afb803ea4a1d438a05f0
3
+ size 67586
models/subword_markov/ch_markov_ctx2_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_contexts": 2042,
6
- "total_transitions": 175418
7
  }
 
2
  "context_size": 2,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_contexts": 1769,
6
+ "total_transitions": 151064
7
  }
models/subword_markov/ch_markov_ctx3_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:25f072530585a2aaaf12cfc35aca7b5b9527eaaf67a243d06f265d95cf78682d
3
- size 217872
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:84fdaafcb5e52af0cd9e249ff651ea983749cc925557218121f0d7a85653c797
3
+ size 194392
models/subword_markov/ch_markov_ctx3_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_contexts": 11105,
6
- "total_transitions": 174807
7
  }
 
2
  "context_size": 3,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_contexts": 9336,
6
+ "total_transitions": 150504
7
  }
models/subword_markov/ch_markov_ctx4_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e8e96aca1a4a4e61ba52c2373da77f16710ba861c64b8653015fe9cb4c3d6b24
3
- size 455667
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d71078f4f1468532db5ba657998c8efdbdd211b304e67e2ca77d88635a671f7
3
+ size 397638
models/subword_markov/ch_markov_ctx4_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_contexts": 30233,
6
- "total_transitions": 174196
7
  }
 
2
  "context_size": 4,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_contexts": 26134,
6
+ "total_transitions": 149944
7
  }
models/subword_ngram/ch_2gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7ecc6ad2f5caba9c4acc2722951d35812ddfd0748e35945b8eb1019aee27202a
3
- size 13892
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17c2d47a218e898e3bac6e60fc2de2f9adcc53c160b68806900ec23c9eefabc1
3
+ size 12108
models/subword_ngram/ch_2gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_ngrams": 1028,
6
- "total_ngrams": 176029
7
  }
 
2
  "n": 2,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_ngrams": 869,
6
+ "total_ngrams": 151624
7
  }
models/subword_ngram/ch_3gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1354a9304538e4be2c8b97bc1d85d3fdb590e5129f6777ec6756e2fc90f0cbb5
3
- size 57312
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baced867ea20a6cb5b359ec97882d2ae2f822b1ffec9ac4b650656fab50d1c45
3
+ size 49528
models/subword_ngram/ch_3gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_ngrams": 5255,
6
- "total_ngrams": 175418
7
  }
 
2
  "n": 3,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_ngrams": 4543,
6
+ "total_ngrams": 151064
7
  }
models/subword_ngram/ch_4gram_subword.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0a808ff2dd136df8018eda9014fabe65264cfd207f4de524397af0d418d2138b
3
- size 161401
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73fe928791c8492066a094c970ee0eadde56b39c4b8aba9c2aa2e34db5083a0a
3
+ size 140036
models/subword_ngram/ch_4gram_subword_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "ch",
5
- "unique_ngrams": 13909,
6
- "total_ngrams": 174807
7
  }
 
2
  "n": 4,
3
  "variant": "subword",
4
  "language": "ch",
5
+ "unique_ngrams": 12416,
6
+ "total_ngrams": 150504
7
  }
models/tokenizer/ch_tokenizer_16k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:634be9f783e2a54aba945f22daf1ece4b4429563bdaa5c3384c14fe647a9d98e
3
- size 497034
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37f30794a09f73e4b923805fe5be00975376a1e1b79fcb80c07ed2173f7a5575
3
+ size 494430
models/tokenizer/ch_tokenizer_16k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/tokenizer/ch_tokenizer_8k.model CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bfd71404f2712cc4642d3377318b688e8290037be26719b11d368397ae231246
3
- size 372129
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0def86c055e5d9fbbd3798691f18b2b80932bfcd504e36c5288479a36306643b
3
+ size 372290
models/tokenizer/ch_tokenizer_8k.vocab CHANGED
The diff for this file is too large to render. See raw diff
 
models/vocabulary/ch_vocabulary.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c46420d7f4bd7e37454cbfb5ab90ff0e34bce723dfd3188face6f244d8bee5dd
3
- size 35121
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8bd347e6037147c0f3dda9c25ece68c2d3cc7280b3681049fe2758a1b89d662
3
+ size 32241
models/vocabulary/ch_vocabulary_metadata.json CHANGED
@@ -1,15 +1,16 @@
1
  {
2
  "language": "ch",
3
- "vocabulary_size": 2085,
 
4
  "statistics": {
5
- "type_token_ratio": 0.20342884628598915,
6
  "coverage": {
7
- "top_100": 0.5450766165051879,
8
- "top_1000": 0.7851302137016423,
9
- "top_5000": 0.9683570397856112
10
  },
11
- "hapax_count": 3836,
12
- "hapax_ratio": 0.6478635365647695,
13
- "total_documents": 611
14
  }
15
  }
 
1
  {
2
  "language": "ch",
3
+ "vocabulary_size": 1918,
4
+ "variant": "full",
5
  "statistics": {
6
+ "type_token_ratio": 0.20998403163257548,
7
  "coverage": {
8
+ "top_100": 0.5441031100296555,
9
+ "top_1000": 0.7878488327883811,
10
+ "top_5000": 0.9801155805642157
11
  },
12
+ "hapax_count": 3605,
13
+ "hapax_ratio": 0.6527249683143219,
14
+ "total_documents": 560
15
  }
16
  }
models/word_markov/ch_markov_ctx1_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:4e948b8936dfad1c80d82463e9f827ccb45e00e1f39c0278a5f8dcb52f513d0e
3
- size 160242
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ecb23d1eded033dd66aa506eb37c0ec91059dbd54574203440cf551687087a4c
3
+ size 145169
models/word_markov/ch_markov_ctx1_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_contexts": 5950,
6
- "total_transitions": 37722
7
  }
 
2
  "context_size": 1,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_contexts": 5466,
6
+ "total_transitions": 25742
7
  }
models/word_markov/ch_markov_ctx2_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52139330dac4acad3c457e2ab79378f0526509cd5e471084d6880cab6e60a458
3
- size 294029
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbdad6f3fbcd31c9b068772bab399ee602476f2fe71c046b10324a8b7427536b
3
+ size 250356
models/word_markov/ch_markov_ctx2_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_contexts": 16706,
6
- "total_transitions": 37111
7
  }
 
2
  "context_size": 2,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_contexts": 14200,
6
+ "total_transitions": 25182
7
  }
models/word_markov/ch_markov_ctx3_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c9e6d5b859f81c57a9f99099ccded171647e39eae754557075bdfd4a337ed26
3
- size 398195
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:572c89e60a48ebaada6351a255615f4f80710d2cd65ea6e1704a8dd38f22a20b
3
+ size 326642
models/word_markov/ch_markov_ctx3_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_contexts": 23561,
6
- "total_transitions": 36500
7
  }
 
2
  "context_size": 3,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_contexts": 18551,
6
+ "total_transitions": 24622
7
  }
models/word_markov/ch_markov_ctx4_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:66d2fbe2c638e09991efa987884e37c9623e4b6a995ba9f88712a09302a8c56b
3
- size 464553
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:606b33292fc4ebbcf6b2a243c7db6ada185bf0a2de7d093a32aa9618b83732a1
3
+ size 368167
models/word_markov/ch_markov_ctx4_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_contexts": 26653,
6
- "total_transitions": 35890
7
  }
 
2
  "context_size": 4,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_contexts": 19968,
6
+ "total_transitions": 24062
7
  }
models/word_ngram/ch_2gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b1a487161d98fe0389e02719d211ce48eea94d42d9c8de5fcd3f2c29a261a1e9
3
- size 12757
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:161dc1b33e0eb3fb7d303774e9bbe1b5f610197221a7e47a3b279e42dd928ae1
3
+ size 8850
models/word_ngram/ch_2gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 2,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_ngrams": 836,
6
- "total_ngrams": 37722
7
  }
 
2
  "n": 2,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_ngrams": 496,
6
+ "total_ngrams": 25742
7
  }
models/word_ngram/ch_3gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e4c5275f134f6244b6e79c0d9cc634daa8b21a9995652d2d33b6ab9e77c23e6c
3
- size 19693
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b81b49fa5eaf988fdfd9f300b5852b982669afeeaca4bff1df92df7c695214b
3
+ size 11291
models/word_ngram/ch_3gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 3,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_ngrams": 1276,
6
- "total_ngrams": 37111
7
  }
 
2
  "n": 3,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_ngrams": 582,
6
+ "total_ngrams": 25182
7
  }
models/word_ngram/ch_4gram_word.parquet CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c4f43fda886e653a04960a529dd8aa9a67720db0872676fb2081c04991bb158
3
- size 30712
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42bd91c300ea148b93c9cebb2e6c418c2e211238f62f60aa93ceda683fc22ac9
3
+ size 16076
models/word_ngram/ch_4gram_word_metadata.json CHANGED
@@ -2,6 +2,6 @@
2
  "n": 4,
3
  "variant": "word",
4
  "language": "ch",
5
- "unique_ngrams": 1937,
6
- "total_ngrams": 36500
7
  }
 
2
  "n": 4,
3
  "variant": "word",
4
  "language": "ch",
5
+ "unique_ngrams": 842,
6
+ "total_ngrams": 24622
7
  }
visualizations/embedding_isotropy.png CHANGED
visualizations/embedding_norms.png CHANGED
visualizations/embedding_similarity.png CHANGED

Git LFS Details

  • SHA256: c749af711cc9118d7d7fc336c958cf4fc1c464e455e8da73c1a50032c78cba58
  • Pointer size: 131 Bytes
  • Size of remote file: 156 kB

Git LFS Details

  • SHA256: d0e67eecdc5f11ee88daab5c9e67aa55749de8d20bd9f889defb2b47b53ef997
  • Pointer size: 131 Bytes
  • Size of remote file: 156 kB
visualizations/markov_branching.png CHANGED
visualizations/markov_contexts.png CHANGED
visualizations/markov_entropy.png CHANGED
visualizations/model_sizes.png CHANGED
visualizations/ngram_coverage.png CHANGED
visualizations/ngram_entropy.png CHANGED