yalhessi commited on
Commit
2cb1479
·
verified ·
1 Parent(s): eca136d

Training in progress, epoch 3, checkpoint

Browse files
checkpoint-46761/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-46761/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-46761/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c4a6e6c845770f97a0b675fc7867fb42e4296891a49a289202f0da9f276d96d
3
+ size 6304096
checkpoint-46761/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3b6dcaa91983ab3a135cc6bd97c61e3ddb1a5fda97bc8df90b85899945cb5e6c
3
+ size 12663802
checkpoint-46761/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:693f798184d95d81164de5abdaf8cc9570e314bc6efeeccaa19fc16b466ebf22
3
+ size 15984
checkpoint-46761/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d9c89b5e2bc0cdd34b6fa63a07ed0e6bcd9f5443470fb786bb32e37c10dc619b
3
+ size 15984
checkpoint-46761/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0f4f5a9cefd8c114ee05aeec6e0a8f5bd12fb3986d21419f49d6ea5c18742ad
3
+ size 15984
checkpoint-46761/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19b97381adf21c42e3b742cf1de27a2eb37f16b2beb2c690b2384098b6d83ce3
3
+ size 15984
checkpoint-46761/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e8bdf506c77ee283ec4c8ca6284e9822a2a8d9cf1b413cfdf1c9bad7512a301
3
+ size 15984
checkpoint-46761/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55c3a3263ad60808b235af1306e59ec65396295f497340ac06a9021733537934
3
+ size 15984
checkpoint-46761/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6deb52fee223960e30fc8e77293b71714c1fed4d38f4ab65188e940f5fbd68d
3
+ size 15984
checkpoint-46761/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e116f68910660ab5e371d76068ea85e682d3d804b3882a9e601495deabbe3f1b
3
+ size 15984
checkpoint-46761/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:978a382bd2c159ab49de71cd49496f82804b1840915bfd54b43a489ced08d6c3
3
+ size 1064
checkpoint-46761/trainer_state.json ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 3118,
6
+ "global_step": 46761,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03207801372938988,
13
+ "grad_norm": 0.8564678430557251,
14
+ "learning_rate": 0.0007978657428198713,
15
+ "loss": 0.5444,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.06415602745877975,
20
+ "grad_norm": 0.7482010722160339,
21
+ "learning_rate": 0.0007957314856397425,
22
+ "loss": 0.461,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.09623404118816963,
27
+ "grad_norm": 0.9299066662788391,
28
+ "learning_rate": 0.0007935929513911166,
29
+ "loss": 0.4262,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.1283120549175595,
34
+ "grad_norm": 0.742969810962677,
35
+ "learning_rate": 0.0007914544171424906,
36
+ "loss": 0.4121,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.16039006864694938,
41
+ "grad_norm": 1.0129729509353638,
42
+ "learning_rate": 0.0007893158828938645,
43
+ "loss": 0.3987,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.19246808237633925,
48
+ "grad_norm": 0.7069104313850403,
49
+ "learning_rate": 0.0007871816257137359,
50
+ "loss": 0.385,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.20003849361647527,
55
+ "eval_loss": 0.36575084924697876,
56
+ "eval_runtime": 5.7691,
57
+ "eval_samples_per_second": 86.668,
58
+ "eval_steps_per_second": 5.547,
59
+ "step": 3118
60
+ },
61
+ {
62
+ "epoch": 0.22454609610572912,
63
+ "grad_norm": 0.8256860375404358,
64
+ "learning_rate": 0.0007850473685336071,
65
+ "loss": 0.3829,
66
+ "step": 3500
67
+ },
68
+ {
69
+ "epoch": 0.256624109835119,
70
+ "grad_norm": 0.9610025882720947,
71
+ "learning_rate": 0.0007829088342849811,
72
+ "loss": 0.3745,
73
+ "step": 4000
74
+ },
75
+ {
76
+ "epoch": 0.28870212356450886,
77
+ "grad_norm": 0.9205407500267029,
78
+ "learning_rate": 0.0007807703000363551,
79
+ "loss": 0.3767,
80
+ "step": 4500
81
+ },
82
+ {
83
+ "epoch": 0.32078013729389876,
84
+ "grad_norm": 1.0542463064193726,
85
+ "learning_rate": 0.0007786317657877291,
86
+ "loss": 0.3699,
87
+ "step": 5000
88
+ },
89
+ {
90
+ "epoch": 0.35285815102328866,
91
+ "grad_norm": 0.8851079344749451,
92
+ "learning_rate": 0.0007764932315391031,
93
+ "loss": 0.3684,
94
+ "step": 5500
95
+ },
96
+ {
97
+ "epoch": 0.3849361647526785,
98
+ "grad_norm": 0.8109485507011414,
99
+ "learning_rate": 0.0007743546972904772,
100
+ "loss": 0.3677,
101
+ "step": 6000
102
+ },
103
+ {
104
+ "epoch": 0.40007698723295054,
105
+ "eval_loss": 0.34624484181404114,
106
+ "eval_runtime": 5.7422,
107
+ "eval_samples_per_second": 87.074,
108
+ "eval_steps_per_second": 5.573,
109
+ "step": 6236
110
+ },
111
+ {
112
+ "epoch": 0.4170141784820684,
113
+ "grad_norm": 0.8642650246620178,
114
+ "learning_rate": 0.0007722161630418511,
115
+ "loss": 0.3578,
116
+ "step": 6500
117
+ },
118
+ {
119
+ "epoch": 0.44909219221145824,
120
+ "grad_norm": 0.8750723600387573,
121
+ "learning_rate": 0.0007700776287932251,
122
+ "loss": 0.358,
123
+ "step": 7000
124
+ },
125
+ {
126
+ "epoch": 0.48117020594084814,
127
+ "grad_norm": 0.9213278889656067,
128
+ "learning_rate": 0.0007679390945445992,
129
+ "loss": 0.3568,
130
+ "step": 7500
131
+ },
132
+ {
133
+ "epoch": 0.513248219670238,
134
+ "grad_norm": 1.209458589553833,
135
+ "learning_rate": 0.0007658048373644704,
136
+ "loss": 0.3509,
137
+ "step": 8000
138
+ },
139
+ {
140
+ "epoch": 0.5453262333996279,
141
+ "grad_norm": 0.8048808574676514,
142
+ "learning_rate": 0.0007636663031158445,
143
+ "loss": 0.3491,
144
+ "step": 8500
145
+ },
146
+ {
147
+ "epoch": 0.5774042471290177,
148
+ "grad_norm": 0.8589063882827759,
149
+ "learning_rate": 0.0007615277688672184,
150
+ "loss": 0.3488,
151
+ "step": 9000
152
+ },
153
+ {
154
+ "epoch": 0.6001154808494258,
155
+ "eval_loss": 0.3319118916988373,
156
+ "eval_runtime": 5.941,
157
+ "eval_samples_per_second": 84.161,
158
+ "eval_steps_per_second": 5.386,
159
+ "step": 9354
160
+ },
161
+ {
162
+ "epoch": 0.6094822608584076,
163
+ "grad_norm": 1.1071431636810303,
164
+ "learning_rate": 0.0007593892346185924,
165
+ "loss": 0.3475,
166
+ "step": 9500
167
+ },
168
+ {
169
+ "epoch": 0.6415602745877975,
170
+ "grad_norm": 1.250051736831665,
171
+ "learning_rate": 0.0007572549774384637,
172
+ "loss": 0.3434,
173
+ "step": 10000
174
+ },
175
+ {
176
+ "epoch": 0.6736382883171874,
177
+ "grad_norm": 0.9173659682273865,
178
+ "learning_rate": 0.0007551164431898377,
179
+ "loss": 0.3425,
180
+ "step": 10500
181
+ },
182
+ {
183
+ "epoch": 0.7057163020465773,
184
+ "grad_norm": 0.9546225666999817,
185
+ "learning_rate": 0.000752982186009709,
186
+ "loss": 0.3415,
187
+ "step": 11000
188
+ },
189
+ {
190
+ "epoch": 0.7377943157759671,
191
+ "grad_norm": 0.756817102432251,
192
+ "learning_rate": 0.000750843651761083,
193
+ "loss": 0.3366,
194
+ "step": 11500
195
+ },
196
+ {
197
+ "epoch": 0.769872329505357,
198
+ "grad_norm": 0.7823662757873535,
199
+ "learning_rate": 0.0007487051175124569,
200
+ "loss": 0.3397,
201
+ "step": 12000
202
+ },
203
+ {
204
+ "epoch": 0.8001539744659011,
205
+ "eval_loss": 0.33135783672332764,
206
+ "eval_runtime": 5.8442,
207
+ "eval_samples_per_second": 85.554,
208
+ "eval_steps_per_second": 5.475,
209
+ "step": 12472
210
+ },
211
+ {
212
+ "epoch": 0.8019503432347469,
213
+ "grad_norm": 1.3129873275756836,
214
+ "learning_rate": 0.000746566583263831,
215
+ "loss": 0.3342,
216
+ "step": 12500
217
+ },
218
+ {
219
+ "epoch": 0.8340283569641368,
220
+ "grad_norm": 1.0603216886520386,
221
+ "learning_rate": 0.000744428049015205,
222
+ "loss": 0.3372,
223
+ "step": 13000
224
+ },
225
+ {
226
+ "epoch": 0.8661063706935267,
227
+ "grad_norm": 0.9776498079299927,
228
+ "learning_rate": 0.0007422895147665791,
229
+ "loss": 0.3343,
230
+ "step": 13500
231
+ },
232
+ {
233
+ "epoch": 0.8981843844229165,
234
+ "grad_norm": 0.9603497385978699,
235
+ "learning_rate": 0.000740150980517953,
236
+ "loss": 0.332,
237
+ "step": 14000
238
+ },
239
+ {
240
+ "epoch": 0.9302623981523064,
241
+ "grad_norm": 1.0065163373947144,
242
+ "learning_rate": 0.0007380124462693271,
243
+ "loss": 0.335,
244
+ "step": 14500
245
+ },
246
+ {
247
+ "epoch": 0.9623404118816963,
248
+ "grad_norm": 0.947246789932251,
249
+ "learning_rate": 0.0007358739120207011,
250
+ "loss": 0.3322,
251
+ "step": 15000
252
+ },
253
+ {
254
+ "epoch": 0.9944184256110862,
255
+ "grad_norm": 1.138590693473816,
256
+ "learning_rate": 0.0007337396548405722,
257
+ "loss": 0.3329,
258
+ "step": 15500
259
+ },
260
+ {
261
+ "epoch": 1.0001924680823764,
262
+ "eval_loss": 0.3191450238227844,
263
+ "eval_runtime": 5.9188,
264
+ "eval_samples_per_second": 84.477,
265
+ "eval_steps_per_second": 5.407,
266
+ "step": 15590
267
+ },
268
+ {
269
+ "epoch": 1.026496439340476,
270
+ "grad_norm": 1.0730034112930298,
271
+ "learning_rate": 0.0007316053976604436,
272
+ "loss": 0.3214,
273
+ "step": 16000
274
+ },
275
+ {
276
+ "epoch": 1.058574453069866,
277
+ "grad_norm": 1.155540108680725,
278
+ "learning_rate": 0.0007294668634118175,
279
+ "loss": 0.3203,
280
+ "step": 16500
281
+ },
282
+ {
283
+ "epoch": 1.0906524667992559,
284
+ "grad_norm": 1.322080373764038,
285
+ "learning_rate": 0.0007273283291631916,
286
+ "loss": 0.32,
287
+ "step": 17000
288
+ },
289
+ {
290
+ "epoch": 1.1227304805286458,
291
+ "grad_norm": 1.028536319732666,
292
+ "learning_rate": 0.0007251897949145656,
293
+ "loss": 0.3206,
294
+ "step": 17500
295
+ },
296
+ {
297
+ "epoch": 1.1548084942580354,
298
+ "grad_norm": 1.0141762495040894,
299
+ "learning_rate": 0.0007230512606659396,
300
+ "loss": 0.3246,
301
+ "step": 18000
302
+ },
303
+ {
304
+ "epoch": 1.1868865079874253,
305
+ "grad_norm": 1.2617709636688232,
306
+ "learning_rate": 0.0007209127264173135,
307
+ "loss": 0.3179,
308
+ "step": 18500
309
+ },
310
+ {
311
+ "epoch": 1.2002309616988516,
312
+ "eval_loss": 0.3040919303894043,
313
+ "eval_runtime": 5.8325,
314
+ "eval_samples_per_second": 85.727,
315
+ "eval_steps_per_second": 5.487,
316
+ "step": 18708
317
+ },
318
+ {
319
+ "epoch": 1.2189645217168152,
320
+ "grad_norm": 0.9643025398254395,
321
+ "learning_rate": 0.0007187741921686877,
322
+ "loss": 0.3131,
323
+ "step": 19000
324
+ },
325
+ {
326
+ "epoch": 1.2510425354462051,
327
+ "grad_norm": 0.8644528388977051,
328
+ "learning_rate": 0.0007166399349885588,
329
+ "loss": 0.3197,
330
+ "step": 19500
331
+ },
332
+ {
333
+ "epoch": 1.283120549175595,
334
+ "grad_norm": 1.0242154598236084,
335
+ "learning_rate": 0.000714501400739933,
336
+ "loss": 0.3189,
337
+ "step": 20000
338
+ },
339
+ {
340
+ "epoch": 1.315198562904985,
341
+ "grad_norm": 0.7361490726470947,
342
+ "learning_rate": 0.0007123628664913069,
343
+ "loss": 0.3147,
344
+ "step": 20500
345
+ },
346
+ {
347
+ "epoch": 1.3472765766343748,
348
+ "grad_norm": 0.9061699509620667,
349
+ "learning_rate": 0.0007102243322426809,
350
+ "loss": 0.3168,
351
+ "step": 21000
352
+ },
353
+ {
354
+ "epoch": 1.3793545903637647,
355
+ "grad_norm": 0.7674645781517029,
356
+ "learning_rate": 0.000708085797994055,
357
+ "loss": 0.3144,
358
+ "step": 21500
359
+ },
360
+ {
361
+ "epoch": 1.400269455315327,
362
+ "eval_loss": 0.303521990776062,
363
+ "eval_runtime": 5.9543,
364
+ "eval_samples_per_second": 83.973,
365
+ "eval_steps_per_second": 5.374,
366
+ "step": 21826
367
+ },
368
+ {
369
+ "epoch": 1.4114326040931546,
370
+ "grad_norm": 1.2573202848434448,
371
+ "learning_rate": 0.0007059472637454289,
372
+ "loss": 0.3182,
373
+ "step": 22000
374
+ },
375
+ {
376
+ "epoch": 1.4435106178225445,
377
+ "grad_norm": 0.7668033838272095,
378
+ "learning_rate": 0.0007038087294968029,
379
+ "loss": 0.3087,
380
+ "step": 22500
381
+ },
382
+ {
383
+ "epoch": 1.4755886315519344,
384
+ "grad_norm": 0.7923159003257751,
385
+ "learning_rate": 0.0007016701952481769,
386
+ "loss": 0.3136,
387
+ "step": 23000
388
+ },
389
+ {
390
+ "epoch": 1.5076666452813243,
391
+ "grad_norm": 0.9079853296279907,
392
+ "learning_rate": 0.000699531660999551,
393
+ "loss": 0.3136,
394
+ "step": 23500
395
+ },
396
+ {
397
+ "epoch": 1.5397446590107142,
398
+ "grad_norm": 0.807373583316803,
399
+ "learning_rate": 0.0006973974038194221,
400
+ "loss": 0.3129,
401
+ "step": 24000
402
+ },
403
+ {
404
+ "epoch": 1.571822672740104,
405
+ "grad_norm": 1.0894283056259155,
406
+ "learning_rate": 0.0006952588695707963,
407
+ "loss": 0.3122,
408
+ "step": 24500
409
+ },
410
+ {
411
+ "epoch": 1.6003079489318022,
412
+ "eval_loss": 0.30009227991104126,
413
+ "eval_runtime": 5.9543,
414
+ "eval_samples_per_second": 83.973,
415
+ "eval_steps_per_second": 5.374,
416
+ "step": 24944
417
+ },
418
+ {
419
+ "epoch": 1.6039006864694938,
420
+ "grad_norm": 0.8650055527687073,
421
+ "learning_rate": 0.0006931203353221702,
422
+ "loss": 0.3128,
423
+ "step": 25000
424
+ },
425
+ {
426
+ "epoch": 1.6359787001988837,
427
+ "grad_norm": 1.0704525709152222,
428
+ "learning_rate": 0.0006909818010735442,
429
+ "loss": 0.3152,
430
+ "step": 25500
431
+ },
432
+ {
433
+ "epoch": 1.6680567139282736,
434
+ "grad_norm": 1.6046242713928223,
435
+ "learning_rate": 0.0006888518209619127,
436
+ "loss": 0.3153,
437
+ "step": 26000
438
+ },
439
+ {
440
+ "epoch": 1.7001347276576635,
441
+ "grad_norm": 0.891106367111206,
442
+ "learning_rate": 0.0006867132867132868,
443
+ "loss": 0.3123,
444
+ "step": 26500
445
+ },
446
+ {
447
+ "epoch": 1.7322127413870532,
448
+ "grad_norm": 0.8591095805168152,
449
+ "learning_rate": 0.0006845747524646608,
450
+ "loss": 0.31,
451
+ "step": 27000
452
+ },
453
+ {
454
+ "epoch": 1.764290755116443,
455
+ "grad_norm": 0.8793129920959473,
456
+ "learning_rate": 0.0006824362182160348,
457
+ "loss": 0.3135,
458
+ "step": 27500
459
+ },
460
+ {
461
+ "epoch": 1.796368768845833,
462
+ "grad_norm": 0.9400936961174011,
463
+ "learning_rate": 0.0006802976839674088,
464
+ "loss": 0.3077,
465
+ "step": 28000
466
+ },
467
+ {
468
+ "epoch": 1.8003464425482774,
469
+ "eval_loss": 0.29524701833724976,
470
+ "eval_runtime": 5.9571,
471
+ "eval_samples_per_second": 83.934,
472
+ "eval_steps_per_second": 5.372,
473
+ "step": 28062
474
+ },
475
+ {
476
+ "epoch": 1.8284467825752229,
477
+ "grad_norm": 0.7908840775489807,
478
+ "learning_rate": 0.0006781591497187827,
479
+ "loss": 0.309,
480
+ "step": 28500
481
+ },
482
+ {
483
+ "epoch": 1.8605247963046128,
484
+ "grad_norm": 1.1478577852249146,
485
+ "learning_rate": 0.0006760206154701568,
486
+ "loss": 0.305,
487
+ "step": 29000
488
+ },
489
+ {
490
+ "epoch": 1.8926028100340027,
491
+ "grad_norm": 0.7777372598648071,
492
+ "learning_rate": 0.0006738820812215308,
493
+ "loss": 0.3092,
494
+ "step": 29500
495
+ },
496
+ {
497
+ "epoch": 1.9246808237633926,
498
+ "grad_norm": 0.8342514634132385,
499
+ "learning_rate": 0.000671747824041402,
500
+ "loss": 0.306,
501
+ "step": 30000
502
+ },
503
+ {
504
+ "epoch": 1.9567588374927825,
505
+ "grad_norm": 0.9895392060279846,
506
+ "learning_rate": 0.0006696092897927761,
507
+ "loss": 0.3128,
508
+ "step": 30500
509
+ },
510
+ {
511
+ "epoch": 1.9888368512221724,
512
+ "grad_norm": 1.0536723136901855,
513
+ "learning_rate": 0.0006674750326126473,
514
+ "loss": 0.3066,
515
+ "step": 31000
516
+ },
517
+ {
518
+ "epoch": 2.0003849361647528,
519
+ "eval_loss": 0.2923731803894043,
520
+ "eval_runtime": 6.0971,
521
+ "eval_samples_per_second": 82.007,
522
+ "eval_steps_per_second": 5.248,
523
+ "step": 31180
524
+ },
525
+ {
526
+ "epoch": 2.0209148649515623,
527
+ "grad_norm": 1.40830397605896,
528
+ "learning_rate": 0.0006653364983640213,
529
+ "loss": 0.2977,
530
+ "step": 31500
531
+ },
532
+ {
533
+ "epoch": 2.052992878680952,
534
+ "grad_norm": 1.0089466571807861,
535
+ "learning_rate": 0.0006631979641153954,
536
+ "loss": 0.2961,
537
+ "step": 32000
538
+ },
539
+ {
540
+ "epoch": 2.085070892410342,
541
+ "grad_norm": 0.854210376739502,
542
+ "learning_rate": 0.0006610594298667693,
543
+ "loss": 0.294,
544
+ "step": 32500
545
+ },
546
+ {
547
+ "epoch": 2.117148906139732,
548
+ "grad_norm": 1.0218485593795776,
549
+ "learning_rate": 0.0006589251726866407,
550
+ "loss": 0.2958,
551
+ "step": 33000
552
+ },
553
+ {
554
+ "epoch": 2.149226919869122,
555
+ "grad_norm": 0.9581003189086914,
556
+ "learning_rate": 0.0006567866384380146,
557
+ "loss": 0.2998,
558
+ "step": 33500
559
+ },
560
+ {
561
+ "epoch": 2.1813049335985117,
562
+ "grad_norm": 0.9771293997764587,
563
+ "learning_rate": 0.0006546481041893886,
564
+ "loss": 0.2954,
565
+ "step": 34000
566
+ },
567
+ {
568
+ "epoch": 2.200423429781228,
569
+ "eval_loss": 0.2844325006008148,
570
+ "eval_runtime": 5.9595,
571
+ "eval_samples_per_second": 83.9,
572
+ "eval_steps_per_second": 5.37,
573
+ "step": 34298
574
+ },
575
+ {
576
+ "epoch": 2.2133829473279016,
577
+ "grad_norm": 1.3172814846038818,
578
+ "learning_rate": 0.0006525095699407627,
579
+ "loss": 0.2971,
580
+ "step": 34500
581
+ },
582
+ {
583
+ "epoch": 2.2454609610572915,
584
+ "grad_norm": 1.260122537612915,
585
+ "learning_rate": 0.0006503710356921366,
586
+ "loss": 0.2931,
587
+ "step": 35000
588
+ },
589
+ {
590
+ "epoch": 2.2775389747866814,
591
+ "grad_norm": 0.8652594089508057,
592
+ "learning_rate": 0.0006482325014435106,
593
+ "loss": 0.2941,
594
+ "step": 35500
595
+ },
596
+ {
597
+ "epoch": 2.309616988516071,
598
+ "grad_norm": 0.9302785396575928,
599
+ "learning_rate": 0.0006460982442633819,
600
+ "loss": 0.2951,
601
+ "step": 36000
602
+ },
603
+ {
604
+ "epoch": 2.341695002245461,
605
+ "grad_norm": 1.0370172262191772,
606
+ "learning_rate": 0.0006439597100147559,
607
+ "loss": 0.2951,
608
+ "step": 36500
609
+ },
610
+ {
611
+ "epoch": 2.3737730159748507,
612
+ "grad_norm": 0.6764707565307617,
613
+ "learning_rate": 0.0006418211757661299,
614
+ "loss": 0.2946,
615
+ "step": 37000
616
+ },
617
+ {
618
+ "epoch": 2.400461923397703,
619
+ "eval_loss": 0.2868812382221222,
620
+ "eval_runtime": 5.9808,
621
+ "eval_samples_per_second": 83.601,
622
+ "eval_steps_per_second": 5.35,
623
+ "step": 37416
624
+ },
625
+ {
626
+ "epoch": 2.4058510297042406,
627
+ "grad_norm": 0.9105328917503357,
628
+ "learning_rate": 0.000639682641517504,
629
+ "loss": 0.2966,
630
+ "step": 37500
631
+ },
632
+ {
633
+ "epoch": 2.4379290434336305,
634
+ "grad_norm": 0.8954421281814575,
635
+ "learning_rate": 0.0006375441072688779,
636
+ "loss": 0.2949,
637
+ "step": 38000
638
+ },
639
+ {
640
+ "epoch": 2.4700070571630204,
641
+ "grad_norm": 0.798809826374054,
642
+ "learning_rate": 0.000635405573020252,
643
+ "loss": 0.2923,
644
+ "step": 38500
645
+ },
646
+ {
647
+ "epoch": 2.5020850708924103,
648
+ "grad_norm": 1.027869701385498,
649
+ "learning_rate": 0.000633267038771626,
650
+ "loss": 0.2988,
651
+ "step": 39000
652
+ },
653
+ {
654
+ "epoch": 2.5341630846218,
655
+ "grad_norm": 1.412424921989441,
656
+ "learning_rate": 0.000631128504523,
657
+ "loss": 0.2876,
658
+ "step": 39500
659
+ },
660
+ {
661
+ "epoch": 2.56624109835119,
662
+ "grad_norm": 0.8323147296905518,
663
+ "learning_rate": 0.0006289942473428712,
664
+ "loss": 0.2873,
665
+ "step": 40000
666
+ },
667
+ {
668
+ "epoch": 2.59831911208058,
669
+ "grad_norm": 1.2047405242919922,
670
+ "learning_rate": 0.0006268599901627425,
671
+ "loss": 0.2876,
672
+ "step": 40500
673
+ },
674
+ {
675
+ "epoch": 2.6005004170141786,
676
+ "eval_loss": 0.2851209044456482,
677
+ "eval_runtime": 5.8822,
678
+ "eval_samples_per_second": 85.002,
679
+ "eval_steps_per_second": 5.44,
680
+ "step": 40534
681
+ },
682
+ {
683
+ "epoch": 2.63039712580997,
684
+ "grad_norm": 0.9327086806297302,
685
+ "learning_rate": 0.0006247214559141165,
686
+ "loss": 0.2948,
687
+ "step": 41000
688
+ },
689
+ {
690
+ "epoch": 2.6624751395393598,
691
+ "grad_norm": 0.9470818638801575,
692
+ "learning_rate": 0.0006225829216654905,
693
+ "loss": 0.2909,
694
+ "step": 41500
695
+ },
696
+ {
697
+ "epoch": 2.6945531532687497,
698
+ "grad_norm": 1.1972421407699585,
699
+ "learning_rate": 0.0006204486644853617,
700
+ "loss": 0.2953,
701
+ "step": 42000
702
+ },
703
+ {
704
+ "epoch": 2.7266311669981396,
705
+ "grad_norm": 0.9601694345474243,
706
+ "learning_rate": 0.0006183101302367357,
707
+ "loss": 0.2901,
708
+ "step": 42500
709
+ },
710
+ {
711
+ "epoch": 2.7587091807275295,
712
+ "grad_norm": 0.796318531036377,
713
+ "learning_rate": 0.0006161715959881098,
714
+ "loss": 0.2879,
715
+ "step": 43000
716
+ },
717
+ {
718
+ "epoch": 2.7907871944569194,
719
+ "grad_norm": 1.1968493461608887,
720
+ "learning_rate": 0.0006140330617394838,
721
+ "loss": 0.2917,
722
+ "step": 43500
723
+ },
724
+ {
725
+ "epoch": 2.800538910630654,
726
+ "eval_loss": 0.2793387174606323,
727
+ "eval_runtime": 5.7736,
728
+ "eval_samples_per_second": 86.601,
729
+ "eval_steps_per_second": 5.542,
730
+ "step": 43652
731
+ },
732
+ {
733
+ "epoch": 2.8228652081863093,
734
+ "grad_norm": 0.9883773326873779,
735
+ "learning_rate": 0.0006118945274908578,
736
+ "loss": 0.2864,
737
+ "step": 44000
738
+ },
739
+ {
740
+ "epoch": 2.8549432219156987,
741
+ "grad_norm": 0.7262638807296753,
742
+ "learning_rate": 0.0006097559932422318,
743
+ "loss": 0.2867,
744
+ "step": 44500
745
+ },
746
+ {
747
+ "epoch": 2.887021235645089,
748
+ "grad_norm": 0.9277000427246094,
749
+ "learning_rate": 0.0006076174589936059,
750
+ "loss": 0.2901,
751
+ "step": 45000
752
+ },
753
+ {
754
+ "epoch": 2.9190992493744785,
755
+ "grad_norm": 0.9092797636985779,
756
+ "learning_rate": 0.0006054789247449798,
757
+ "loss": 0.289,
758
+ "step": 45500
759
+ },
760
+ {
761
+ "epoch": 2.951177263103869,
762
+ "grad_norm": 1.1064151525497437,
763
+ "learning_rate": 0.0006033403904963538,
764
+ "loss": 0.2925,
765
+ "step": 46000
766
+ },
767
+ {
768
+ "epoch": 2.9832552768332583,
769
+ "grad_norm": 1.2269039154052734,
770
+ "learning_rate": 0.0006012018562477279,
771
+ "loss": 0.284,
772
+ "step": 46500
773
+ }
774
+ ],
775
+ "logging_steps": 500,
776
+ "max_steps": 187044,
777
+ "num_input_tokens_seen": 0,
778
+ "num_train_epochs": 12,
779
+ "save_steps": 500,
780
+ "stateful_callbacks": {
781
+ "TrainerControl": {
782
+ "args": {
783
+ "should_epoch_stop": false,
784
+ "should_evaluate": false,
785
+ "should_log": false,
786
+ "should_save": true,
787
+ "should_training_stop": false
788
+ },
789
+ "attributes": {}
790
+ }
791
+ },
792
+ "total_flos": 3.143201808684417e+18,
793
+ "train_batch_size": 2,
794
+ "trial_name": null,
795
+ "trial_params": null
796
+ }
checkpoint-46761/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37b90a284264b08902c1644c9f43994559f5b7a14e3b12bb5ba7570f7f5cdcae
3
+ size 5496