yalhessi commited on
Commit
c96df08
·
verified ·
1 Parent(s): 1646223

Training in progress, epoch 3, checkpoint

Browse files
checkpoint-46707/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: deepseek-ai/deepseek-coder-1.3b-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-46707/adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "deepseek-ai/deepseek-coder-1.3b-base",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 32,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
checkpoint-46707/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cee4ae1b202220c9e94898f664fd44b9a58966daa491f5fc1210208dbd855194
3
+ size 6304096
checkpoint-46707/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:97d905f5cb1b0383f2a797f042906874e4ab52f35cdfccb9de917e79acb59aa4
3
+ size 12663802
checkpoint-46707/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50e012bfe67a06396f80eaf055620ac01d33b1c332555217dcc4d659f477939b
3
+ size 15984
checkpoint-46707/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c246fff219e67d0f70752037b524a2a6f2f1c5fef994e1ebf20f49e4eaa2691d
3
+ size 15984
checkpoint-46707/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a7c6db0c6336aa44f6853189ce941b5b6c7d10f9dc54a3d1434c1dfabed008c
3
+ size 15984
checkpoint-46707/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e992cf1cddba242fbc3bddee522a2a2291cc35baa926b417357ca6cb3da39a05
3
+ size 15984
checkpoint-46707/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edfb5ce8e6f2fca0e49c2fd3cf0f388b43f3772faf2029c1c5a6203e4d79327d
3
+ size 15984
checkpoint-46707/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13ddea8287db271c7ec531b7bd169bd3eeb288e49eb1683af307190d846ce0b6
3
+ size 15984
checkpoint-46707/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16a11d95b5e9a6e4dc11215af0420e4aae14055fb1b66f9b24df1ae32333e159
3
+ size 15984
checkpoint-46707/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a09aeb3d94cecf9b05e5b6734acda6363ca84864ee16bac97a1ded002998d20
3
+ size 15984
checkpoint-46707/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2055b82e949db2c4abcbec2e91a1b292525373a735a73b4daf2ec5e942f85b70
3
+ size 1064
checkpoint-46707/trainer_state.json ADDED
@@ -0,0 +1,796 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 3.0,
5
+ "eval_steps": 3114,
6
+ "global_step": 46707,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.03211510052026463,
13
+ "grad_norm": 0.7474520206451416,
14
+ "learning_rate": 0.0007978632753120518,
15
+ "loss": 0.5422,
16
+ "step": 500
17
+ },
18
+ {
19
+ "epoch": 0.06423020104052926,
20
+ "grad_norm": 0.89436274766922,
21
+ "learning_rate": 0.0007957265506241035,
22
+ "loss": 0.4574,
23
+ "step": 1000
24
+ },
25
+ {
26
+ "epoch": 0.09634530156079389,
27
+ "grad_norm": 0.8834966421127319,
28
+ "learning_rate": 0.0007935855439227525,
29
+ "loss": 0.4305,
30
+ "step": 1500
31
+ },
32
+ {
33
+ "epoch": 0.12846040208105852,
34
+ "grad_norm": 0.9943472743034363,
35
+ "learning_rate": 0.0007914445372214016,
36
+ "loss": 0.411,
37
+ "step": 2000
38
+ },
39
+ {
40
+ "epoch": 0.16057550260132314,
41
+ "grad_norm": 0.738410472869873,
42
+ "learning_rate": 0.0007893035305200505,
43
+ "loss": 0.3989,
44
+ "step": 2500
45
+ },
46
+ {
47
+ "epoch": 0.19269060312158778,
48
+ "grad_norm": 1.2562445402145386,
49
+ "learning_rate": 0.0007871668058321023,
50
+ "loss": 0.3906,
51
+ "step": 3000
52
+ },
53
+ {
54
+ "epoch": 0.2000128460402081,
55
+ "eval_loss": 0.38617298007011414,
56
+ "eval_runtime": 6.1184,
57
+ "eval_samples_per_second": 81.721,
58
+ "eval_steps_per_second": 5.23,
59
+ "step": 3114
60
+ },
61
+ {
62
+ "epoch": 0.2248057036418524,
63
+ "grad_norm": 0.8588173389434814,
64
+ "learning_rate": 0.0007850257991307513,
65
+ "loss": 0.3847,
66
+ "step": 3500
67
+ },
68
+ {
69
+ "epoch": 0.25692080416211704,
70
+ "grad_norm": 0.8775615096092224,
71
+ "learning_rate": 0.0007828847924294003,
72
+ "loss": 0.3824,
73
+ "step": 4000
74
+ },
75
+ {
76
+ "epoch": 0.28903590468238166,
77
+ "grad_norm": 0.8612831830978394,
78
+ "learning_rate": 0.0007807437857280493,
79
+ "loss": 0.374,
80
+ "step": 4500
81
+ },
82
+ {
83
+ "epoch": 0.3211510052026463,
84
+ "grad_norm": 1.0078139305114746,
85
+ "learning_rate": 0.0007786027790266984,
86
+ "loss": 0.367,
87
+ "step": 5000
88
+ },
89
+ {
90
+ "epoch": 0.3532661057229109,
91
+ "grad_norm": 0.7598047852516174,
92
+ "learning_rate": 0.0007764703363521528,
93
+ "loss": 0.3685,
94
+ "step": 5500
95
+ },
96
+ {
97
+ "epoch": 0.38538120624317557,
98
+ "grad_norm": 0.779103696346283,
99
+ "learning_rate": 0.0007743293296508018,
100
+ "loss": 0.3635,
101
+ "step": 6000
102
+ },
103
+ {
104
+ "epoch": 0.4000256920804162,
105
+ "eval_loss": 0.3629798889160156,
106
+ "eval_runtime": 6.0698,
107
+ "eval_samples_per_second": 82.375,
108
+ "eval_steps_per_second": 5.272,
109
+ "step": 6228
110
+ },
111
+ {
112
+ "epoch": 0.4174963067634402,
113
+ "grad_norm": 1.0634421110153198,
114
+ "learning_rate": 0.0007721883229494509,
115
+ "loss": 0.3585,
116
+ "step": 6500
117
+ },
118
+ {
119
+ "epoch": 0.4496114072837048,
120
+ "grad_norm": 0.7991892099380493,
121
+ "learning_rate": 0.0007700473162480999,
122
+ "loss": 0.3542,
123
+ "step": 7000
124
+ },
125
+ {
126
+ "epoch": 0.4817265078039694,
127
+ "grad_norm": 1.0669060945510864,
128
+ "learning_rate": 0.000767906309546749,
129
+ "loss": 0.3507,
130
+ "step": 7500
131
+ },
132
+ {
133
+ "epoch": 0.5138416083242341,
134
+ "grad_norm": 0.764560878276825,
135
+ "learning_rate": 0.000765765302845398,
136
+ "loss": 0.3502,
137
+ "step": 8000
138
+ },
139
+ {
140
+ "epoch": 0.5459567088444987,
141
+ "grad_norm": 0.882352888584137,
142
+ "learning_rate": 0.000763624296144047,
143
+ "loss": 0.3538,
144
+ "step": 8500
145
+ },
146
+ {
147
+ "epoch": 0.5780718093647633,
148
+ "grad_norm": 1.4643352031707764,
149
+ "learning_rate": 0.000761483289442696,
150
+ "loss": 0.3503,
151
+ "step": 9000
152
+ },
153
+ {
154
+ "epoch": 0.6000385381206244,
155
+ "eval_loss": 0.34752723574638367,
156
+ "eval_runtime": 6.2876,
157
+ "eval_samples_per_second": 79.522,
158
+ "eval_steps_per_second": 5.089,
159
+ "step": 9342
160
+ },
161
+ {
162
+ "epoch": 0.610186909885028,
163
+ "grad_norm": 0.9141144752502441,
164
+ "learning_rate": 0.0007593465647547478,
165
+ "loss": 0.3461,
166
+ "step": 9500
167
+ },
168
+ {
169
+ "epoch": 0.6423020104052926,
170
+ "grad_norm": 0.7810879349708557,
171
+ "learning_rate": 0.0007572055580533967,
172
+ "loss": 0.345,
173
+ "step": 10000
174
+ },
175
+ {
176
+ "epoch": 0.6744171109255572,
177
+ "grad_norm": 0.6038429141044617,
178
+ "learning_rate": 0.0007550645513520458,
179
+ "loss": 0.348,
180
+ "step": 10500
181
+ },
182
+ {
183
+ "epoch": 0.7065322114458218,
184
+ "grad_norm": 0.8717966079711914,
185
+ "learning_rate": 0.0007529235446506948,
186
+ "loss": 0.3387,
187
+ "step": 11000
188
+ },
189
+ {
190
+ "epoch": 0.7386473119660865,
191
+ "grad_norm": 0.8474560976028442,
192
+ "learning_rate": 0.0007507825379493438,
193
+ "loss": 0.3493,
194
+ "step": 11500
195
+ },
196
+ {
197
+ "epoch": 0.7707624124863511,
198
+ "grad_norm": 1.002699375152588,
199
+ "learning_rate": 0.0007486415312479928,
200
+ "loss": 0.3403,
201
+ "step": 12000
202
+ },
203
+ {
204
+ "epoch": 0.8000513841608324,
205
+ "eval_loss": 0.3313402533531189,
206
+ "eval_runtime": 6.1854,
207
+ "eval_samples_per_second": 80.835,
208
+ "eval_steps_per_second": 5.173,
209
+ "step": 12456
210
+ },
211
+ {
212
+ "epoch": 0.8028775130066157,
213
+ "grad_norm": 0.9874686002731323,
214
+ "learning_rate": 0.0007465005245466419,
215
+ "loss": 0.3374,
216
+ "step": 12500
217
+ },
218
+ {
219
+ "epoch": 0.8349926135268804,
220
+ "grad_norm": 0.8380157351493835,
221
+ "learning_rate": 0.000744359517845291,
222
+ "loss": 0.3321,
223
+ "step": 13000
224
+ },
225
+ {
226
+ "epoch": 0.8671077140471449,
227
+ "grad_norm": 0.9501023888587952,
228
+ "learning_rate": 0.0007422270751707453,
229
+ "loss": 0.3384,
230
+ "step": 13500
231
+ },
232
+ {
233
+ "epoch": 0.8992228145674096,
234
+ "grad_norm": 0.8805665373802185,
235
+ "learning_rate": 0.0007400860684693944,
236
+ "loss": 0.3361,
237
+ "step": 14000
238
+ },
239
+ {
240
+ "epoch": 0.9313379150876743,
241
+ "grad_norm": 0.9132845401763916,
242
+ "learning_rate": 0.0007379450617680433,
243
+ "loss": 0.3346,
244
+ "step": 14500
245
+ },
246
+ {
247
+ "epoch": 0.9634530156079388,
248
+ "grad_norm": 1.006101369857788,
249
+ "learning_rate": 0.0007358040550666924,
250
+ "loss": 0.3348,
251
+ "step": 15000
252
+ },
253
+ {
254
+ "epoch": 0.9955681161282035,
255
+ "grad_norm": 0.7373970746994019,
256
+ "learning_rate": 0.0007336630483653414,
257
+ "loss": 0.3331,
258
+ "step": 15500
259
+ },
260
+ {
261
+ "epoch": 1.0000642302010405,
262
+ "eval_loss": 0.33074307441711426,
263
+ "eval_runtime": 6.1886,
264
+ "eval_samples_per_second": 80.793,
265
+ "eval_steps_per_second": 5.171,
266
+ "step": 15570
267
+ },
268
+ {
269
+ "epoch": 1.0276832166484682,
270
+ "grad_norm": 1.116804599761963,
271
+ "learning_rate": 0.0007315263236773932,
272
+ "loss": 0.3198,
273
+ "step": 16000
274
+ },
275
+ {
276
+ "epoch": 1.0597983171687329,
277
+ "grad_norm": 0.8930056095123291,
278
+ "learning_rate": 0.0007293853169760421,
279
+ "loss": 0.3236,
280
+ "step": 16500
281
+ },
282
+ {
283
+ "epoch": 1.0919134176889973,
284
+ "grad_norm": 1.135382056236267,
285
+ "learning_rate": 0.0007272443102746912,
286
+ "loss": 0.3195,
287
+ "step": 17000
288
+ },
289
+ {
290
+ "epoch": 1.124028518209262,
291
+ "grad_norm": 1.1518044471740723,
292
+ "learning_rate": 0.0007251033035733402,
293
+ "loss": 0.3212,
294
+ "step": 17500
295
+ },
296
+ {
297
+ "epoch": 1.1561436187295266,
298
+ "grad_norm": 0.8707193732261658,
299
+ "learning_rate": 0.0007229622968719892,
300
+ "loss": 0.3189,
301
+ "step": 18000
302
+ },
303
+ {
304
+ "epoch": 1.1882587192497913,
305
+ "grad_norm": 1.0189062356948853,
306
+ "learning_rate": 0.0007208212901706382,
307
+ "loss": 0.3239,
308
+ "step": 18500
309
+ },
310
+ {
311
+ "epoch": 1.2000770762412487,
312
+ "eval_loss": 0.31824222207069397,
313
+ "eval_runtime": 6.2671,
314
+ "eval_samples_per_second": 79.782,
315
+ "eval_steps_per_second": 5.106,
316
+ "step": 18684
317
+ },
318
+ {
319
+ "epoch": 1.2203738197700558,
320
+ "grad_norm": 0.9791691303253174,
321
+ "learning_rate": 0.00071868456548269,
322
+ "loss": 0.3208,
323
+ "step": 19000
324
+ },
325
+ {
326
+ "epoch": 1.2524889202903204,
327
+ "grad_norm": 0.6720991134643555,
328
+ "learning_rate": 0.000716543558781339,
329
+ "loss": 0.3196,
330
+ "step": 19500
331
+ },
332
+ {
333
+ "epoch": 1.2846040208105851,
334
+ "grad_norm": 0.8015382289886475,
335
+ "learning_rate": 0.000714402552079988,
336
+ "loss": 0.322,
337
+ "step": 20000
338
+ },
339
+ {
340
+ "epoch": 1.3167191213308498,
341
+ "grad_norm": 0.9411060214042664,
342
+ "learning_rate": 0.0007122615453786371,
343
+ "loss": 0.3178,
344
+ "step": 20500
345
+ },
346
+ {
347
+ "epoch": 1.3488342218511145,
348
+ "grad_norm": 1.2184011936187744,
349
+ "learning_rate": 0.000710120538677286,
350
+ "loss": 0.3157,
351
+ "step": 21000
352
+ },
353
+ {
354
+ "epoch": 1.3809493223713791,
355
+ "grad_norm": 0.9301189184188843,
356
+ "learning_rate": 0.0007079795319759352,
357
+ "loss": 0.3155,
358
+ "step": 21500
359
+ },
360
+ {
361
+ "epoch": 1.4000899222814567,
362
+ "eval_loss": 0.30902907252311707,
363
+ "eval_runtime": 6.1349,
364
+ "eval_samples_per_second": 81.501,
365
+ "eval_steps_per_second": 5.216,
366
+ "step": 21798
367
+ },
368
+ {
369
+ "epoch": 1.4130644228916436,
370
+ "grad_norm": 0.8129053115844727,
371
+ "learning_rate": 0.0007058385252745842,
372
+ "loss": 0.3187,
373
+ "step": 22000
374
+ },
375
+ {
376
+ "epoch": 1.4451795234119083,
377
+ "grad_norm": 0.9045296311378479,
378
+ "learning_rate": 0.0007037018005866359,
379
+ "loss": 0.3184,
380
+ "step": 22500
381
+ },
382
+ {
383
+ "epoch": 1.477294623932173,
384
+ "grad_norm": 1.3381433486938477,
385
+ "learning_rate": 0.0007015607938852849,
386
+ "loss": 0.3161,
387
+ "step": 23000
388
+ },
389
+ {
390
+ "epoch": 1.5094097244524374,
391
+ "grad_norm": 1.2223104238510132,
392
+ "learning_rate": 0.0006994240691973367,
393
+ "loss": 0.3105,
394
+ "step": 23500
395
+ },
396
+ {
397
+ "epoch": 1.541524824972702,
398
+ "grad_norm": 1.6614145040512085,
399
+ "learning_rate": 0.0006972830624959856,
400
+ "loss": 0.312,
401
+ "step": 24000
402
+ },
403
+ {
404
+ "epoch": 1.5736399254929667,
405
+ "grad_norm": 1.0367958545684814,
406
+ "learning_rate": 0.0006951420557946347,
407
+ "loss": 0.3143,
408
+ "step": 24500
409
+ },
410
+ {
411
+ "epoch": 1.6001027683216649,
412
+ "eval_loss": 0.3097926378250122,
413
+ "eval_runtime": 6.0915,
414
+ "eval_samples_per_second": 82.082,
415
+ "eval_steps_per_second": 5.253,
416
+ "step": 24912
417
+ },
418
+ {
419
+ "epoch": 1.6057550260132314,
420
+ "grad_norm": 0.9055228233337402,
421
+ "learning_rate": 0.0006930010490932837,
422
+ "loss": 0.3142,
423
+ "step": 25000
424
+ },
425
+ {
426
+ "epoch": 1.637870126533496,
427
+ "grad_norm": 1.0741256475448608,
428
+ "learning_rate": 0.0006908600423919327,
429
+ "loss": 0.3172,
430
+ "step": 25500
431
+ },
432
+ {
433
+ "epoch": 1.6699852270537607,
434
+ "grad_norm": 0.8932151198387146,
435
+ "learning_rate": 0.0006887233177039845,
436
+ "loss": 0.3117,
437
+ "step": 26000
438
+ },
439
+ {
440
+ "epoch": 1.7021003275740254,
441
+ "grad_norm": 1.035973310470581,
442
+ "learning_rate": 0.0006865823110026335,
443
+ "loss": 0.313,
444
+ "step": 26500
445
+ },
446
+ {
447
+ "epoch": 1.73421542809429,
448
+ "grad_norm": 0.9380423426628113,
449
+ "learning_rate": 0.0006844455863146852,
450
+ "loss": 0.3083,
451
+ "step": 27000
452
+ },
453
+ {
454
+ "epoch": 1.7663305286145545,
455
+ "grad_norm": 0.8082458972930908,
456
+ "learning_rate": 0.0006823045796133342,
457
+ "loss": 0.3054,
458
+ "step": 27500
459
+ },
460
+ {
461
+ "epoch": 1.7984456291348192,
462
+ "grad_norm": 0.646691620349884,
463
+ "learning_rate": 0.0006801635729119833,
464
+ "loss": 0.3114,
465
+ "step": 28000
466
+ },
467
+ {
468
+ "epoch": 1.8001156143618728,
469
+ "eval_loss": 0.3078465163707733,
470
+ "eval_runtime": 6.2786,
471
+ "eval_samples_per_second": 79.635,
472
+ "eval_steps_per_second": 5.097,
473
+ "step": 28026
474
+ },
475
+ {
476
+ "epoch": 1.8305607296550839,
477
+ "grad_norm": 0.8007400035858154,
478
+ "learning_rate": 0.0006780225662106322,
479
+ "loss": 0.3151,
480
+ "step": 28500
481
+ },
482
+ {
483
+ "epoch": 1.8626758301753483,
484
+ "grad_norm": 0.8854690194129944,
485
+ "learning_rate": 0.0006758815595092813,
486
+ "loss": 0.3094,
487
+ "step": 29000
488
+ },
489
+ {
490
+ "epoch": 1.894790930695613,
491
+ "grad_norm": 0.9263831377029419,
492
+ "learning_rate": 0.0006737405528079303,
493
+ "loss": 0.3063,
494
+ "step": 29500
495
+ },
496
+ {
497
+ "epoch": 1.9269060312158777,
498
+ "grad_norm": 0.946422815322876,
499
+ "learning_rate": 0.0006715995461065794,
500
+ "loss": 0.3061,
501
+ "step": 30000
502
+ },
503
+ {
504
+ "epoch": 1.9590211317361423,
505
+ "grad_norm": 0.9862657785415649,
506
+ "learning_rate": 0.0006694585394052283,
507
+ "loss": 0.306,
508
+ "step": 30500
509
+ },
510
+ {
511
+ "epoch": 1.991136232256407,
512
+ "grad_norm": 1.5128605365753174,
513
+ "learning_rate": 0.0006673175327038774,
514
+ "loss": 0.305,
515
+ "step": 31000
516
+ },
517
+ {
518
+ "epoch": 2.000128460402081,
519
+ "eval_loss": 0.30374282598495483,
520
+ "eval_runtime": 6.3123,
521
+ "eval_samples_per_second": 79.21,
522
+ "eval_steps_per_second": 5.069,
523
+ "step": 31140
524
+ },
525
+ {
526
+ "epoch": 2.0232513327766717,
527
+ "grad_norm": 0.9001232385635376,
528
+ "learning_rate": 0.0006651765260025264,
529
+ "loss": 0.2992,
530
+ "step": 31500
531
+ },
532
+ {
533
+ "epoch": 2.0553664332969364,
534
+ "grad_norm": 0.6829231381416321,
535
+ "learning_rate": 0.0006630355193011754,
536
+ "loss": 0.2984,
537
+ "step": 32000
538
+ },
539
+ {
540
+ "epoch": 2.087481533817201,
541
+ "grad_norm": 1.010355830192566,
542
+ "learning_rate": 0.0006608945125998244,
543
+ "loss": 0.293,
544
+ "step": 32500
545
+ },
546
+ {
547
+ "epoch": 2.1195966343374657,
548
+ "grad_norm": 0.8349985480308533,
549
+ "learning_rate": 0.0006587620699252789,
550
+ "loss": 0.2984,
551
+ "step": 33000
552
+ },
553
+ {
554
+ "epoch": 2.15171173485773,
555
+ "grad_norm": 1.2974556684494019,
556
+ "learning_rate": 0.0006566210632239279,
557
+ "loss": 0.2977,
558
+ "step": 33500
559
+ },
560
+ {
561
+ "epoch": 2.1838268353779946,
562
+ "grad_norm": 1.0526032447814941,
563
+ "learning_rate": 0.0006544800565225769,
564
+ "loss": 0.2934,
565
+ "step": 34000
566
+ },
567
+ {
568
+ "epoch": 2.2001413064422892,
569
+ "eval_loss": 0.2976307272911072,
570
+ "eval_runtime": 6.1928,
571
+ "eval_samples_per_second": 80.739,
572
+ "eval_steps_per_second": 5.167,
573
+ "step": 34254
574
+ },
575
+ {
576
+ "epoch": 2.2159419358982593,
577
+ "grad_norm": 1.0207550525665283,
578
+ "learning_rate": 0.000652339049821226,
579
+ "loss": 0.2999,
580
+ "step": 34500
581
+ },
582
+ {
583
+ "epoch": 2.248057036418524,
584
+ "grad_norm": 0.7849873900413513,
585
+ "learning_rate": 0.0006501980431198749,
586
+ "loss": 0.3017,
587
+ "step": 35000
588
+ },
589
+ {
590
+ "epoch": 2.2801721369387886,
591
+ "grad_norm": 0.807049572467804,
592
+ "learning_rate": 0.000648057036418524,
593
+ "loss": 0.2931,
594
+ "step": 35500
595
+ },
596
+ {
597
+ "epoch": 2.3122872374590533,
598
+ "grad_norm": 0.9243353605270386,
599
+ "learning_rate": 0.0006459160297171731,
600
+ "loss": 0.2956,
601
+ "step": 36000
602
+ },
603
+ {
604
+ "epoch": 2.344402337979318,
605
+ "grad_norm": 1.2570290565490723,
606
+ "learning_rate": 0.0006437750230158221,
607
+ "loss": 0.2958,
608
+ "step": 36500
609
+ },
610
+ {
611
+ "epoch": 2.3765174384995826,
612
+ "grad_norm": 0.8402499556541443,
613
+ "learning_rate": 0.0006416340163144711,
614
+ "loss": 0.2983,
615
+ "step": 37000
616
+ },
617
+ {
618
+ "epoch": 2.4001541524824974,
619
+ "eval_loss": 0.29359912872314453,
620
+ "eval_runtime": 6.2635,
621
+ "eval_samples_per_second": 79.828,
622
+ "eval_steps_per_second": 5.109,
623
+ "step": 37368
624
+ },
625
+ {
626
+ "epoch": 2.4086325390198473,
627
+ "grad_norm": 0.8177831768989563,
628
+ "learning_rate": 0.0006394930096131202,
629
+ "loss": 0.2949,
630
+ "step": 37500
631
+ },
632
+ {
633
+ "epoch": 2.4407476395401115,
634
+ "grad_norm": 1.740903377532959,
635
+ "learning_rate": 0.0006373562849251718,
636
+ "loss": 0.2923,
637
+ "step": 38000
638
+ },
639
+ {
640
+ "epoch": 2.472862740060376,
641
+ "grad_norm": 0.799891471862793,
642
+ "learning_rate": 0.0006352195602372236,
643
+ "loss": 0.291,
644
+ "step": 38500
645
+ },
646
+ {
647
+ "epoch": 2.504977840580641,
648
+ "grad_norm": 0.7158030867576599,
649
+ "learning_rate": 0.0006330828355492754,
650
+ "loss": 0.2913,
651
+ "step": 39000
652
+ },
653
+ {
654
+ "epoch": 2.5370929411009056,
655
+ "grad_norm": 1.3045659065246582,
656
+ "learning_rate": 0.0006309418288479243,
657
+ "loss": 0.2888,
658
+ "step": 39500
659
+ },
660
+ {
661
+ "epoch": 2.5692080416211702,
662
+ "grad_norm": 0.874169647693634,
663
+ "learning_rate": 0.0006288008221465734,
664
+ "loss": 0.295,
665
+ "step": 40000
666
+ },
667
+ {
668
+ "epoch": 2.600166998522705,
669
+ "eval_loss": 0.29626408219337463,
670
+ "eval_runtime": 6.2399,
671
+ "eval_samples_per_second": 80.129,
672
+ "eval_steps_per_second": 5.128,
673
+ "step": 40482
674
+ },
675
+ {
676
+ "epoch": 2.601323142141435,
677
+ "grad_norm": 0.9616047739982605,
678
+ "learning_rate": 0.0006266598154452224,
679
+ "loss": 0.2929,
680
+ "step": 40500
681
+ },
682
+ {
683
+ "epoch": 2.6334382426616996,
684
+ "grad_norm": 0.8935590386390686,
685
+ "learning_rate": 0.0006245188087438714,
686
+ "loss": 0.292,
687
+ "step": 41000
688
+ },
689
+ {
690
+ "epoch": 2.6655533431819642,
691
+ "grad_norm": 0.7435338497161865,
692
+ "learning_rate": 0.0006223778020425204,
693
+ "loss": 0.2904,
694
+ "step": 41500
695
+ },
696
+ {
697
+ "epoch": 2.697668443702229,
698
+ "grad_norm": 0.8259156346321106,
699
+ "learning_rate": 0.0006202367953411695,
700
+ "loss": 0.2868,
701
+ "step": 42000
702
+ },
703
+ {
704
+ "epoch": 2.729783544222493,
705
+ "grad_norm": 0.848035454750061,
706
+ "learning_rate": 0.0006180957886398185,
707
+ "loss": 0.2876,
708
+ "step": 42500
709
+ },
710
+ {
711
+ "epoch": 2.7618986447427583,
712
+ "grad_norm": 0.9523009657859802,
713
+ "learning_rate": 0.0006159547819384675,
714
+ "loss": 0.2891,
715
+ "step": 43000
716
+ },
717
+ {
718
+ "epoch": 2.7940137452630225,
719
+ "grad_norm": 0.7964786887168884,
720
+ "learning_rate": 0.0006138137752371165,
721
+ "loss": 0.2932,
722
+ "step": 43500
723
+ },
724
+ {
725
+ "epoch": 2.8001798445629134,
726
+ "eval_loss": 0.2853344976902008,
727
+ "eval_runtime": 6.2618,
728
+ "eval_samples_per_second": 79.849,
729
+ "eval_steps_per_second": 5.11,
730
+ "step": 43596
731
+ },
732
+ {
733
+ "epoch": 2.826128845783287,
734
+ "grad_norm": 1.2521328926086426,
735
+ "learning_rate": 0.0006116727685357656,
736
+ "loss": 0.2884,
737
+ "step": 44000
738
+ },
739
+ {
740
+ "epoch": 2.858243946303552,
741
+ "grad_norm": 1.0122313499450684,
742
+ "learning_rate": 0.0006095317618344145,
743
+ "loss": 0.2896,
744
+ "step": 44500
745
+ },
746
+ {
747
+ "epoch": 2.8903590468238165,
748
+ "grad_norm": 0.9321467280387878,
749
+ "learning_rate": 0.0006073907551330636,
750
+ "loss": 0.2893,
751
+ "step": 45000
752
+ },
753
+ {
754
+ "epoch": 2.922474147344081,
755
+ "grad_norm": 1.090589165687561,
756
+ "learning_rate": 0.0006052497484317126,
757
+ "loss": 0.2916,
758
+ "step": 45500
759
+ },
760
+ {
761
+ "epoch": 2.954589247864346,
762
+ "grad_norm": 1.4329869747161865,
763
+ "learning_rate": 0.0006031087417303616,
764
+ "loss": 0.2871,
765
+ "step": 46000
766
+ },
767
+ {
768
+ "epoch": 2.9867043483846105,
769
+ "grad_norm": 0.9811238646507263,
770
+ "learning_rate": 0.0006009677350290106,
771
+ "loss": 0.2866,
772
+ "step": 46500
773
+ }
774
+ ],
775
+ "logging_steps": 500,
776
+ "max_steps": 186828,
777
+ "num_input_tokens_seen": 0,
778
+ "num_train_epochs": 12,
779
+ "save_steps": 500,
780
+ "stateful_callbacks": {
781
+ "TrainerControl": {
782
+ "args": {
783
+ "should_epoch_stop": false,
784
+ "should_evaluate": false,
785
+ "should_log": false,
786
+ "should_save": true,
787
+ "should_training_stop": false
788
+ },
789
+ "attributes": {}
790
+ }
791
+ },
792
+ "total_flos": 3.1426026591360123e+18,
793
+ "train_batch_size": 2,
794
+ "trial_name": null,
795
+ "trial_params": null
796
+ }
checkpoint-46707/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:892edd3338e5c2cbc20ea9ef24acea77922058f7e35a99445dd322996489f4e7
3
+ size 5496