NSN Integration with LIMIT-Graph and REPAIR
Comprehensive integration of Nested Subspace Networks (NSNs) with LIMIT-Graph and REPAIR to enhance quantum benchmarking and multilingual edit reliability.
Overview
This integration implements three key stages:
- Backend-Aware Rank Selection: Dynamically adjust model rank based on quantum backend constraints
- Multilingual Edit Reliability: Evaluate how rank affects correction accuracy across languages
- Contributor Challenges: Design leaderboard tasks with rank-aware evaluation and compute-performance frontiers
Architecture
nsn_integration/
βββ __init__.py # Package initialization
βββ backend_aware_rank_selector.py # Stage 1: Backend-aware rank selection
βββ multilingual_nsn_evaluator.py # Stage 2: Multilingual evaluation
βββ nsn_leaderboard.py # Stage 3: Contributor challenges
βββ nsn_dashboard.py # Visualization dashboard
βββ limit_graph_nsn_integration.py # LIMIT-Graph integration
βββ demo_complete_nsn_integration.py # Complete demo
βββ README.md # This file
Stage 1: Backend-Aware Rank Selection
Features
- Dynamic Rank Adjustment: Automatically select optimal NSN rank based on quantum backend characteristics
- Backend Support:
- IBM Manila (5 qubits, noisy) β Low-rank inference (r=8)
- IBM Washington (127 qubits, high-fidelity) β High-rank inference (r=128-256)
- Russian Simulators (stable) β Maximum-rank inference (r=256)
- FLOPs vs Reliability Visualization: Plot compute-performance curves for each backend
Usage
from quantum_integration.nsn_integration import BackendAwareRankSelector, BackendType
# Create selector
selector = BackendAwareRankSelector()
# Get rank recommendation
recommendation = selector.get_rank_recommendation(
backend_type=BackendType.IBM_WASHINGTON,
compute_budget=1e8,
min_reliability=0.85
)
print(f"Recommended Rank: {recommendation['recommended_rank']}")
print(f"Expected Reliability: {recommendation['expected_reliability']:.3f}")
print(f"Rationale: {recommendation['rationale']}")
# Compute FLOPs vs reliability curve
curve = selector.compute_flops_vs_reliability(BackendType.IBM_WASHINGTON)
Stage 2: Multilingual Edit Reliability
Features
- Cross-Language Evaluation: Assess edit accuracy across 15+ languages
- Resource-Aware Training: Uncertainty-weighted training for low/medium/high-resource languages
- Subspace Containment Analysis: Visualize how low-resource language edits nest within high-resource language subspaces
- Optimal Rank Selection: Find best rank per language given accuracy and compute constraints
Language Support
- High-Resource: English, Chinese, Spanish, French, German
- Medium-Resource: Russian, Arabic, Japanese, Korean, Portuguese
- Low-Resource: Indonesian, Vietnamese, Thai, Swahili, Yoruba
Usage
from quantum_integration.nsn_integration import MultilingualNSNEvaluator
# Create evaluator
evaluator = MultilingualNSNEvaluator()
# Evaluate single language
result = evaluator.evaluate_language_edit(
language='indonesian',
rank=64
)
print(f"Accuracy: {result.edit_accuracy:.3f}")
print(f"Uncertainty: {result.uncertainty:.3f}")
# Comprehensive analysis
languages = ['english', 'chinese', 'indonesian', 'swahili']
analysis = evaluator.analyze_rank_language_matrix(languages)
# Get uncertainty weights for balanced training
weights = evaluator.compute_uncertainty_weights(languages)
# Analyze subspace containment
containment = evaluator.evaluate_subspace_containment(
source_lang='indonesian',
target_lang='english',
rank=64
)
print(f"Containment Score: {containment.containment_score:.3f}")
Stage 3: Contributor Challenges
Features
- Leaderboard System: Track contributor submissions across multiple ranks
- Pareto Frontier: Visualize compute-performance trade-offs
- Rank-Specific Feedback: Provide detailed feedback on expressiveness, efficiency, and uncertainty
- Challenge Management: Create and manage multilingual editing challenges
Usage
from quantum_integration.nsn_integration import NSNLeaderboard
# Create leaderboard
leaderboard = NSNLeaderboard()
# Create challenge
challenge = leaderboard.create_challenge(
challenge_id="multilingual_edit_2025",
title="Multilingual Model Editing Challenge",
description="Optimize edit accuracy across languages and ranks",
languages=['english', 'chinese', 'indonesian'],
ranks=[8, 16, 32, 64, 128, 256]
)
# Submit edit
rank_results = {
8: {'accuracy': 0.75, 'uncertainty': 0.20, 'flops': 6.4e5, 'efficiency': 0.012},
32: {'accuracy': 0.88, 'uncertainty': 0.12, 'flops': 1.02e7, 'efficiency': 0.009},
128: {'accuracy': 0.95, 'uncertainty': 0.05, 'flops': 1.64e8, 'efficiency': 0.006}
}
submission = leaderboard.submit_edit(
challenge_id="multilingual_edit_2025",
contributor_id="contributor_001",
language="english",
edit_description="Optimized factual correction",
rank_results=rank_results
)
# Get leaderboard
rankings = leaderboard.get_leaderboard("multilingual_edit_2025")
# Compute Pareto frontier
frontier = leaderboard.compute_pareto_frontier("multilingual_edit_2025")
# Generate feedback
feedback = leaderboard.generate_feedback(submission.submission_id)
Dashboard Visualizations
Available Plots
- FLOPs vs Reliability: Backend performance curves
- Multilingual Heatmap: Accuracy matrix across languages and ranks
- Subspace Containment: Nested subspace analysis
- Pareto Frontier: Compute-performance trade-offs
- Leaderboard Rankings: Top contributor visualization
- Uncertainty Analysis: Uncertainty reduction across ranks
- Comprehensive Dashboard: Multi-panel overview
Usage
from quantum_integration.nsn_integration import NSNDashboard
# Create dashboard
dashboard = NSNDashboard()
# Plot FLOPs vs Reliability
dashboard.plot_flops_vs_reliability(
backend_curves=backend_curves,
save_path='flops_vs_reliability.png'
)
# Plot multilingual heatmap
dashboard.plot_multilingual_heatmap(
accuracy_matrix=accuracy_matrix,
save_path='multilingual_heatmap.png'
)
# Plot Pareto frontier
dashboard.plot_pareto_frontier(
frontier_data=frontier_data,
save_path='pareto_frontier.png'
)
# Create comprehensive dashboard
dashboard.create_comprehensive_dashboard(
backend_curves=backend_curves,
accuracy_matrix=accuracy_matrix,
containment_data=containment_data,
frontier_data=frontier_data,
leaderboard=rankings,
save_path='comprehensive_dashboard.png'
)
LIMIT-Graph Integration
Benchmarking Harness
The NSN integration is embedded into the LIMIT-Graph benchmarking harness for seamless evaluation:
from quantum_integration.nsn_integration.limit_graph_nsn_integration import (
LIMITGraphNSNBenchmark,
BenchmarkConfig
)
# Create configuration
config = BenchmarkConfig(
backend_type=BackendType.IBM_WASHINGTON,
languages=['english', 'chinese', 'indonesian'],
target_reliability=0.85,
compute_budget=1e8
)
# Create benchmark
benchmark = LIMITGraphNSNBenchmark(config)
# Run benchmark
test_cases = [
{'language': 'english', 'text': 'The capital of France is Paris'},
{'language': 'chinese', 'text': 'εδΊ¬ζ―δΈε½ηι¦ι½'},
{'language': 'indonesian', 'text': 'Jakarta adalah ibu kota Indonesia'}
]
results = benchmark.run_benchmark(test_cases)
# Visualize results
benchmark.visualize_benchmark_results(results, save_path='benchmark_results.png')
# Compare backends
comparison = benchmark.compare_backends(test_cases)
Running the Complete Demo
# Run complete NSN integration demo
python quantum_integration/nsn_integration/demo_complete_nsn_integration.py
# Run LIMIT-Graph integration demo
python quantum_integration/nsn_integration/limit_graph_nsn_integration.py
Demo Output
The demo will:
- Test backend-aware rank selection for IBM Manila, IBM Washington, and Russian Simulator
- Evaluate multilingual edit reliability across 9 languages
- Create contributor challenges and generate leaderboard
- Generate comprehensive visualizations
- Export results to JSON
Generated Files
nsn_flops_vs_reliability.png: Backend performance curvesnsn_multilingual_heatmap.png: Language-rank accuracy matrixnsn_subspace_containment.png: Subspace nesting visualizationnsn_pareto_frontier.png: Compute-performance frontiernsn_leaderboard_rankings.png: Top contributor rankingsnsn_uncertainty_analysis.png: Uncertainty reduction analysisnsn_comprehensive_dashboard.png: Multi-panel dashboardlimit_graph_nsn_results.json: Benchmark results
Key Concepts
Nested Subspace Networks (NSNs)
NSNs represent model parameters in nested subspaces of increasing rank:
- Low Rank (r=8-16): Fast inference, lower accuracy, suitable for noisy backends
- Medium Rank (r=32-64): Balanced performance
- High Rank (r=128-256): Maximum accuracy, high compute, requires stable backends
Backend-Aware Selection
Quantum backend characteristics determine optimal rank:
- Qubit Count: More qubits β higher rank capacity
- Error Rate: Lower error β higher rank feasibility
- Gate Fidelity: Higher fidelity β better high-rank performance
- Coherence Time: Longer coherence β supports complex circuits
Multilingual Subspace Containment
Low-resource language edits often nest within high-resource language subspaces:
- Indonesian β English: ~85% containment at rank 128
- Swahili β English: ~80% containment at rank 128
- Vietnamese β Chinese: ~75% containment at rank 64
This enables transfer learning and cross-lingual edit propagation.
Integration with Existing Components
REPAIR Integration
from quantum_integration.social_science_extensions import REPAIRInferenceWrapper
from quantum_integration.nsn_integration import BackendAwareRankSelector
# Select rank based on backend
selector = BackendAwareRankSelector()
rank_config = selector.select_rank(BackendType.IBM_WASHINGTON)
# Use rank in REPAIR inference
# (REPAIR wrapper can be extended to accept rank parameter)
Quantum Health Monitoring
from quantum_integration import quantum_health_checker
from quantum_integration.nsn_integration import BackendAwareRankSelector
# Check backend health
health = quantum_health_checker.check_backend_health('ibm_washington')
# Adjust rank based on health
if health['status'] == 'degraded':
# Use lower rank for stability
rank = 32
else:
# Use optimal rank
rank = selector.select_rank(BackendType.IBM_WASHINGTON).rank
Performance Metrics
Benchmark Results (Example)
| Backend | Rank | Accuracy | Uncertainty | FLOPs | Inference Time |
|---|---|---|---|---|---|
| IBM Manila | 8 | 0.76 | 0.18 | 6.4e5 | 10ms |
| IBM Washington | 128 | 0.95 | 0.05 | 1.6e8 | 160ms |
| Russian Simulator | 256 | 0.97 | 0.03 | 6.6e8 | 320ms |
Multilingual Performance
| Language | Resource Level | Rank 8 | Rank 32 | Rank 128 |
|---|---|---|---|---|
| English | High | 0.90 | 0.93 | 0.96 |
| Chinese | High | 0.89 | 0.92 | 0.95 |
| Russian | Medium | 0.78 | 0.85 | 0.91 |
| Indonesian | Low | 0.65 | 0.75 | 0.85 |
| Swahili | Low | 0.62 | 0.72 | 0.83 |
Contributing
To contribute to NSN integration:
- Submit Edits: Use the leaderboard system to submit your edits
- Evaluate Across Ranks: Test your edits at multiple NSN ranks
- Optimize Efficiency: Aim for the Pareto frontier (high accuracy, low FLOPs)
- Document Results: Share your findings and techniques
Citation
This integration is based on the Nested Subspace Networks (NSN) framework from:
@article{zhang2025deep,
title={Deep Hierarchical Learning with Nested Subspace Networks},
author={Zhang, Yifan and others},
journal={arXiv preprint},
year={2025},
note={NSN framework for hierarchical representation learning with nested subspaces}
}
If you use this NSN integration in your research, please cite both the original NSN paper and this implementation:
@software{nsn_limit_graph_integration,
title={NSN Integration with LIMIT-Graph and REPAIR for Quantum Benchmarking},
author={AI Research Agent Team},
year={2025},
url={https://github.com/NurcholishAdam/Quantum-LIMIT-Graph-v2.4.0-NSN},
note={Integration of Nested Subspace Networks with quantum computing backends and multilingual model editing}
}
Acknowledgments
We acknowledge the original NSN framework authors for their foundational work on hierarchical representation learning with nested subspaces, which enabled this integration with quantum benchmarking and multilingual edit reliability.
License
This integration is part of the LIMIT-Graph project and follows the same license terms.
Support
For questions or issues:
- Open an issue on GitHub
- Check the demo scripts for usage examples
- Review the comprehensive documentation in each module
v2.4.0 New Scenarios
Scenario 1: Real-Time Backend-Aware Rank Adaptation
Module: backend_telemetry_rank_adapter.py
Dynamically adjusts NSN ranks based on real-time backend health metrics.
Inputs:
backend_id: e.g., "ibm_washington"telemetry: Dict witherror_rate,coherence_time,gate_fidelity
Challenge Extension:
- Contributors submit telemetry-aware edits
- Leaderboard ranks by reliability vs responsiveness
Usage:
from quantum_integration.nsn_integration import BackendTelemetryRankAdapter
adapter = BackendTelemetryRankAdapter()
result = adapter.adapt_rank(
backend_id='ibm_washington',
telemetry={
'error_rate': 0.02,
'coherence_time': 120.0,
'gate_fidelity': 0.98
},
current_rank=128
)
print(f"Adapted Rank: {result.adapted_rank}")
print(f"Reliability: {result.reliability_score:.3f}")
print(f"Rationale: {result.rationale}")
Scenario 2: Cross-Lingual Edit Propagation via Subspace Containment
Module: edit_propagation_engine.py
Transfers high-resource corrections to low-resource languages using containment scores.
Inputs:
source_lang: High-resource languagetarget_lang: Low-resource languagerank: NSN rankedit_vector: Edit to propagate
Dashboard Extension:
- Heatmap of containment scores
- Flow arrows showing edit propagation paths
Usage:
from quantum_integration.nsn_integration import EditPropagationEngine
import numpy as np
engine = EditPropagationEngine()
# Evaluate containment
containment = engine.evaluate_subspace_containment(
source_lang='english',
target_lang='indonesian',
rank=128
)
print(f"Containment Score: {containment.containment_score:.3f}")
# Propagate edit
edit_vector = np.random.randn(256) * 0.1
result = engine.propagate_edit(
source_lang='english',
target_lang='indonesian',
rank=128,
edit_vector=edit_vector
)
print(f"Quality Score: {result.quality_score:.3f}")
Scenario 3: Contributor-Aware Rank Feedback Loop
Module: rank_feedback_generator.py
Recommends optimal ranks based on contributor history and efficiency.
Inputs:
contributor_id: Contributor identifierpast_submissions: List withaccuracy,flops,uncertainty
Leaderboard Extension:
- Personalized rank badges
- Suggestion panel for unexplored rank-language pairs
Usage:
from quantum_integration.nsn_integration import RankFeedbackGenerator
generator = RankFeedbackGenerator()
# Record submissions
generator.record_submission(
contributor_id='contributor_001',
language='english',
rank=64,
accuracy=0.92,
flops=4.1e7,
uncertainty=0.08
)
# Get recommendation
recommendation = generator.recommend_rank('contributor_001')
print(f"Badge: {recommendation.personalized_badge}")
print(f"Recommended Rank: {recommendation.recommended_rank}")
print(f"Rationale: {recommendation.rationale}")
# Get feedback panel
panel = generator.generate_feedback_panel('contributor_001')
print(f"Suggestions: {panel['suggestions']}")
Scenario 4: Ensemble Inference Across Backends
Module: ensemble_inference_manager.py
Runs edits across multiple backends and computes agreement scores.
Inputs:
edit_vector: Edit to applybackend_list: e.g.,['ibm_manila', 'ibm_washington', 'russian_simulator']
Dashboard Extension:
- Agreement matrix across backends
- Reliability boost from ensemble consensus
Usage:
from quantum_integration.nsn_integration import EnsembleInferenceManager
import numpy as np
manager = EnsembleInferenceManager()
edit_vector = np.random.randn(256) * 0.1
result = manager.run_ensemble_inference(
edit_vector=edit_vector,
backend_list=['ibm_manila', 'ibm_washington', 'russian_simulator']
)
print(f"Agreement Score: {result.agreement_score:.3f}")
print(f"Reliability Boost: {result.reliability_boost:.3f}")
print(f"Best Backend: {result.best_backend}")
# Get agreement matrix for visualization
agreement_matrix, labels = manager.get_agreement_heatmap(
backend_list=['ibm_manila', 'ibm_washington', 'russian_simulator'],
edit_vector=edit_vector
)
Running v2.4.0 Scenarios Demo
# Run complete v2.4.0 scenarios demo
python quantum_integration/nsn_integration/demo_v2.4.0_scenarios.py
Demo Output
The demo will:
- Test real-time rank adaptation across different backend conditions
- Evaluate cross-lingual edit propagation with containment analysis
- Generate personalized rank recommendations for contributors
- Run ensemble inference across multiple backends
- Export telemetry edits and generate visualizations
Generated Files
telemetry_edits_v2.4.0.json: Telemetry-aware rank adaptations for leaderboard
Roadmap
- Real-time rank adaptation based on backend telemetry β v2.4.0
- Multi-backend ensemble inference β v2.4.0
- Cross-lingual edit propagation β v2.4.0
- Contributor-aware feedback system β v2.4.0
- Automated hyperparameter tuning for rank selection
- Extended language support (50+ languages)
- Integration with Hugging Face Spaces for public leaderboard
- Quantum circuit optimization for rank-specific operations