NSN Integration with LIMIT-Graph and REPAIR

Comprehensive integration of Nested Subspace Networks (NSNs) with LIMIT-Graph and REPAIR to enhance quantum benchmarking and multilingual edit reliability.

Overview

This integration implements three key stages:

  1. Backend-Aware Rank Selection: Dynamically adjust model rank based on quantum backend constraints
  2. Multilingual Edit Reliability: Evaluate how rank affects correction accuracy across languages
  3. Contributor Challenges: Design leaderboard tasks with rank-aware evaluation and compute-performance frontiers

Architecture

nsn_integration/
β”œβ”€β”€ __init__.py                          # Package initialization
β”œβ”€β”€ backend_aware_rank_selector.py       # Stage 1: Backend-aware rank selection
β”œβ”€β”€ multilingual_nsn_evaluator.py        # Stage 2: Multilingual evaluation
β”œβ”€β”€ nsn_leaderboard.py                   # Stage 3: Contributor challenges
β”œβ”€β”€ nsn_dashboard.py                     # Visualization dashboard
β”œβ”€β”€ limit_graph_nsn_integration.py       # LIMIT-Graph integration
β”œβ”€β”€ demo_complete_nsn_integration.py     # Complete demo
└── README.md                            # This file

Stage 1: Backend-Aware Rank Selection

Features

  • Dynamic Rank Adjustment: Automatically select optimal NSN rank based on quantum backend characteristics
  • Backend Support:
    • IBM Manila (5 qubits, noisy) β†’ Low-rank inference (r=8)
    • IBM Washington (127 qubits, high-fidelity) β†’ High-rank inference (r=128-256)
    • Russian Simulators (stable) β†’ Maximum-rank inference (r=256)
  • FLOPs vs Reliability Visualization: Plot compute-performance curves for each backend

Usage

from quantum_integration.nsn_integration import BackendAwareRankSelector, BackendType

# Create selector
selector = BackendAwareRankSelector()

# Get rank recommendation
recommendation = selector.get_rank_recommendation(
    backend_type=BackendType.IBM_WASHINGTON,
    compute_budget=1e8,
    min_reliability=0.85
)

print(f"Recommended Rank: {recommendation['recommended_rank']}")
print(f"Expected Reliability: {recommendation['expected_reliability']:.3f}")
print(f"Rationale: {recommendation['rationale']}")

# Compute FLOPs vs reliability curve
curve = selector.compute_flops_vs_reliability(BackendType.IBM_WASHINGTON)

Stage 2: Multilingual Edit Reliability

Features

  • Cross-Language Evaluation: Assess edit accuracy across 15+ languages
  • Resource-Aware Training: Uncertainty-weighted training for low/medium/high-resource languages
  • Subspace Containment Analysis: Visualize how low-resource language edits nest within high-resource language subspaces
  • Optimal Rank Selection: Find best rank per language given accuracy and compute constraints

Language Support

  • High-Resource: English, Chinese, Spanish, French, German
  • Medium-Resource: Russian, Arabic, Japanese, Korean, Portuguese
  • Low-Resource: Indonesian, Vietnamese, Thai, Swahili, Yoruba

Usage

from quantum_integration.nsn_integration import MultilingualNSNEvaluator

# Create evaluator
evaluator = MultilingualNSNEvaluator()

# Evaluate single language
result = evaluator.evaluate_language_edit(
    language='indonesian',
    rank=64
)

print(f"Accuracy: {result.edit_accuracy:.3f}")
print(f"Uncertainty: {result.uncertainty:.3f}")

# Comprehensive analysis
languages = ['english', 'chinese', 'indonesian', 'swahili']
analysis = evaluator.analyze_rank_language_matrix(languages)

# Get uncertainty weights for balanced training
weights = evaluator.compute_uncertainty_weights(languages)

# Analyze subspace containment
containment = evaluator.evaluate_subspace_containment(
    source_lang='indonesian',
    target_lang='english',
    rank=64
)

print(f"Containment Score: {containment.containment_score:.3f}")

Stage 3: Contributor Challenges

Features

  • Leaderboard System: Track contributor submissions across multiple ranks
  • Pareto Frontier: Visualize compute-performance trade-offs
  • Rank-Specific Feedback: Provide detailed feedback on expressiveness, efficiency, and uncertainty
  • Challenge Management: Create and manage multilingual editing challenges

Usage

from quantum_integration.nsn_integration import NSNLeaderboard

# Create leaderboard
leaderboard = NSNLeaderboard()

# Create challenge
challenge = leaderboard.create_challenge(
    challenge_id="multilingual_edit_2025",
    title="Multilingual Model Editing Challenge",
    description="Optimize edit accuracy across languages and ranks",
    languages=['english', 'chinese', 'indonesian'],
    ranks=[8, 16, 32, 64, 128, 256]
)

# Submit edit
rank_results = {
    8: {'accuracy': 0.75, 'uncertainty': 0.20, 'flops': 6.4e5, 'efficiency': 0.012},
    32: {'accuracy': 0.88, 'uncertainty': 0.12, 'flops': 1.02e7, 'efficiency': 0.009},
    128: {'accuracy': 0.95, 'uncertainty': 0.05, 'flops': 1.64e8, 'efficiency': 0.006}
}

submission = leaderboard.submit_edit(
    challenge_id="multilingual_edit_2025",
    contributor_id="contributor_001",
    language="english",
    edit_description="Optimized factual correction",
    rank_results=rank_results
)

# Get leaderboard
rankings = leaderboard.get_leaderboard("multilingual_edit_2025")

# Compute Pareto frontier
frontier = leaderboard.compute_pareto_frontier("multilingual_edit_2025")

# Generate feedback
feedback = leaderboard.generate_feedback(submission.submission_id)

Dashboard Visualizations

Available Plots

  1. FLOPs vs Reliability: Backend performance curves
  2. Multilingual Heatmap: Accuracy matrix across languages and ranks
  3. Subspace Containment: Nested subspace analysis
  4. Pareto Frontier: Compute-performance trade-offs
  5. Leaderboard Rankings: Top contributor visualization
  6. Uncertainty Analysis: Uncertainty reduction across ranks
  7. Comprehensive Dashboard: Multi-panel overview

Usage

from quantum_integration.nsn_integration import NSNDashboard

# Create dashboard
dashboard = NSNDashboard()

# Plot FLOPs vs Reliability
dashboard.plot_flops_vs_reliability(
    backend_curves=backend_curves,
    save_path='flops_vs_reliability.png'
)

# Plot multilingual heatmap
dashboard.plot_multilingual_heatmap(
    accuracy_matrix=accuracy_matrix,
    save_path='multilingual_heatmap.png'
)

# Plot Pareto frontier
dashboard.plot_pareto_frontier(
    frontier_data=frontier_data,
    save_path='pareto_frontier.png'
)

# Create comprehensive dashboard
dashboard.create_comprehensive_dashboard(
    backend_curves=backend_curves,
    accuracy_matrix=accuracy_matrix,
    containment_data=containment_data,
    frontier_data=frontier_data,
    leaderboard=rankings,
    save_path='comprehensive_dashboard.png'
)

LIMIT-Graph Integration

Benchmarking Harness

The NSN integration is embedded into the LIMIT-Graph benchmarking harness for seamless evaluation:

from quantum_integration.nsn_integration.limit_graph_nsn_integration import (
    LIMITGraphNSNBenchmark,
    BenchmarkConfig
)

# Create configuration
config = BenchmarkConfig(
    backend_type=BackendType.IBM_WASHINGTON,
    languages=['english', 'chinese', 'indonesian'],
    target_reliability=0.85,
    compute_budget=1e8
)

# Create benchmark
benchmark = LIMITGraphNSNBenchmark(config)

# Run benchmark
test_cases = [
    {'language': 'english', 'text': 'The capital of France is Paris'},
    {'language': 'chinese', 'text': 'εŒ—δΊ¬ζ˜―δΈ­ε›½ηš„ι¦–ιƒ½'},
    {'language': 'indonesian', 'text': 'Jakarta adalah ibu kota Indonesia'}
]

results = benchmark.run_benchmark(test_cases)

# Visualize results
benchmark.visualize_benchmark_results(results, save_path='benchmark_results.png')

# Compare backends
comparison = benchmark.compare_backends(test_cases)

Running the Complete Demo

# Run complete NSN integration demo
python quantum_integration/nsn_integration/demo_complete_nsn_integration.py

# Run LIMIT-Graph integration demo
python quantum_integration/nsn_integration/limit_graph_nsn_integration.py

Demo Output

The demo will:

  1. Test backend-aware rank selection for IBM Manila, IBM Washington, and Russian Simulator
  2. Evaluate multilingual edit reliability across 9 languages
  3. Create contributor challenges and generate leaderboard
  4. Generate comprehensive visualizations
  5. Export results to JSON

Generated Files

  • nsn_flops_vs_reliability.png: Backend performance curves
  • nsn_multilingual_heatmap.png: Language-rank accuracy matrix
  • nsn_subspace_containment.png: Subspace nesting visualization
  • nsn_pareto_frontier.png: Compute-performance frontier
  • nsn_leaderboard_rankings.png: Top contributor rankings
  • nsn_uncertainty_analysis.png: Uncertainty reduction analysis
  • nsn_comprehensive_dashboard.png: Multi-panel dashboard
  • limit_graph_nsn_results.json: Benchmark results

Key Concepts

Nested Subspace Networks (NSNs)

NSNs represent model parameters in nested subspaces of increasing rank:

  • Low Rank (r=8-16): Fast inference, lower accuracy, suitable for noisy backends
  • Medium Rank (r=32-64): Balanced performance
  • High Rank (r=128-256): Maximum accuracy, high compute, requires stable backends

Backend-Aware Selection

Quantum backend characteristics determine optimal rank:

  • Qubit Count: More qubits β†’ higher rank capacity
  • Error Rate: Lower error β†’ higher rank feasibility
  • Gate Fidelity: Higher fidelity β†’ better high-rank performance
  • Coherence Time: Longer coherence β†’ supports complex circuits

Multilingual Subspace Containment

Low-resource language edits often nest within high-resource language subspaces:

  • Indonesian β†’ English: ~85% containment at rank 128
  • Swahili β†’ English: ~80% containment at rank 128
  • Vietnamese β†’ Chinese: ~75% containment at rank 64

This enables transfer learning and cross-lingual edit propagation.

Integration with Existing Components

REPAIR Integration

from quantum_integration.social_science_extensions import REPAIRInferenceWrapper
from quantum_integration.nsn_integration import BackendAwareRankSelector

# Select rank based on backend
selector = BackendAwareRankSelector()
rank_config = selector.select_rank(BackendType.IBM_WASHINGTON)

# Use rank in REPAIR inference
# (REPAIR wrapper can be extended to accept rank parameter)

Quantum Health Monitoring

from quantum_integration import quantum_health_checker
from quantum_integration.nsn_integration import BackendAwareRankSelector

# Check backend health
health = quantum_health_checker.check_backend_health('ibm_washington')

# Adjust rank based on health
if health['status'] == 'degraded':
    # Use lower rank for stability
    rank = 32
else:
    # Use optimal rank
    rank = selector.select_rank(BackendType.IBM_WASHINGTON).rank

Performance Metrics

Benchmark Results (Example)

Backend Rank Accuracy Uncertainty FLOPs Inference Time
IBM Manila 8 0.76 0.18 6.4e5 10ms
IBM Washington 128 0.95 0.05 1.6e8 160ms
Russian Simulator 256 0.97 0.03 6.6e8 320ms

Multilingual Performance

Language Resource Level Rank 8 Rank 32 Rank 128
English High 0.90 0.93 0.96
Chinese High 0.89 0.92 0.95
Russian Medium 0.78 0.85 0.91
Indonesian Low 0.65 0.75 0.85
Swahili Low 0.62 0.72 0.83

Contributing

To contribute to NSN integration:

  1. Submit Edits: Use the leaderboard system to submit your edits
  2. Evaluate Across Ranks: Test your edits at multiple NSN ranks
  3. Optimize Efficiency: Aim for the Pareto frontier (high accuracy, low FLOPs)
  4. Document Results: Share your findings and techniques

Citation

This integration is based on the Nested Subspace Networks (NSN) framework from:

@article{zhang2025deep,
  title={Deep Hierarchical Learning with Nested Subspace Networks},
  author={Zhang, Yifan and others},
  journal={arXiv preprint},
  year={2025},
  note={NSN framework for hierarchical representation learning with nested subspaces}
}

If you use this NSN integration in your research, please cite both the original NSN paper and this implementation:

@software{nsn_limit_graph_integration,
  title={NSN Integration with LIMIT-Graph and REPAIR for Quantum Benchmarking},
  author={AI Research Agent Team},
  year={2025},
  url={https://github.com/NurcholishAdam/Quantum-LIMIT-Graph-v2.4.0-NSN},
  note={Integration of Nested Subspace Networks with quantum computing backends and multilingual model editing}
}

Acknowledgments

We acknowledge the original NSN framework authors for their foundational work on hierarchical representation learning with nested subspaces, which enabled this integration with quantum benchmarking and multilingual edit reliability.

License

This integration is part of the LIMIT-Graph project and follows the same license terms.

Support

For questions or issues:

  • Open an issue on GitHub
  • Check the demo scripts for usage examples
  • Review the comprehensive documentation in each module

v2.4.0 New Scenarios

Scenario 1: Real-Time Backend-Aware Rank Adaptation

Module: backend_telemetry_rank_adapter.py

Dynamically adjusts NSN ranks based on real-time backend health metrics.

Inputs:

  • backend_id: e.g., "ibm_washington"
  • telemetry: Dict with error_rate, coherence_time, gate_fidelity

Challenge Extension:

  • Contributors submit telemetry-aware edits
  • Leaderboard ranks by reliability vs responsiveness

Usage:

from quantum_integration.nsn_integration import BackendTelemetryRankAdapter

adapter = BackendTelemetryRankAdapter()

result = adapter.adapt_rank(
    backend_id='ibm_washington',
    telemetry={
        'error_rate': 0.02,
        'coherence_time': 120.0,
        'gate_fidelity': 0.98
    },
    current_rank=128
)

print(f"Adapted Rank: {result.adapted_rank}")
print(f"Reliability: {result.reliability_score:.3f}")
print(f"Rationale: {result.rationale}")

Scenario 2: Cross-Lingual Edit Propagation via Subspace Containment

Module: edit_propagation_engine.py

Transfers high-resource corrections to low-resource languages using containment scores.

Inputs:

  • source_lang: High-resource language
  • target_lang: Low-resource language
  • rank: NSN rank
  • edit_vector: Edit to propagate

Dashboard Extension:

  • Heatmap of containment scores
  • Flow arrows showing edit propagation paths

Usage:

from quantum_integration.nsn_integration import EditPropagationEngine
import numpy as np

engine = EditPropagationEngine()

# Evaluate containment
containment = engine.evaluate_subspace_containment(
    source_lang='english',
    target_lang='indonesian',
    rank=128
)

print(f"Containment Score: {containment.containment_score:.3f}")

# Propagate edit
edit_vector = np.random.randn(256) * 0.1
result = engine.propagate_edit(
    source_lang='english',
    target_lang='indonesian',
    rank=128,
    edit_vector=edit_vector
)

print(f"Quality Score: {result.quality_score:.3f}")

Scenario 3: Contributor-Aware Rank Feedback Loop

Module: rank_feedback_generator.py

Recommends optimal ranks based on contributor history and efficiency.

Inputs:

  • contributor_id: Contributor identifier
  • past_submissions: List with accuracy, flops, uncertainty

Leaderboard Extension:

  • Personalized rank badges
  • Suggestion panel for unexplored rank-language pairs

Usage:

from quantum_integration.nsn_integration import RankFeedbackGenerator

generator = RankFeedbackGenerator()

# Record submissions
generator.record_submission(
    contributor_id='contributor_001',
    language='english',
    rank=64,
    accuracy=0.92,
    flops=4.1e7,
    uncertainty=0.08
)

# Get recommendation
recommendation = generator.recommend_rank('contributor_001')

print(f"Badge: {recommendation.personalized_badge}")
print(f"Recommended Rank: {recommendation.recommended_rank}")
print(f"Rationale: {recommendation.rationale}")

# Get feedback panel
panel = generator.generate_feedback_panel('contributor_001')
print(f"Suggestions: {panel['suggestions']}")

Scenario 4: Ensemble Inference Across Backends

Module: ensemble_inference_manager.py

Runs edits across multiple backends and computes agreement scores.

Inputs:

  • edit_vector: Edit to apply
  • backend_list: e.g., ['ibm_manila', 'ibm_washington', 'russian_simulator']

Dashboard Extension:

  • Agreement matrix across backends
  • Reliability boost from ensemble consensus

Usage:

from quantum_integration.nsn_integration import EnsembleInferenceManager
import numpy as np

manager = EnsembleInferenceManager()

edit_vector = np.random.randn(256) * 0.1

result = manager.run_ensemble_inference(
    edit_vector=edit_vector,
    backend_list=['ibm_manila', 'ibm_washington', 'russian_simulator']
)

print(f"Agreement Score: {result.agreement_score:.3f}")
print(f"Reliability Boost: {result.reliability_boost:.3f}")
print(f"Best Backend: {result.best_backend}")

# Get agreement matrix for visualization
agreement_matrix, labels = manager.get_agreement_heatmap(
    backend_list=['ibm_manila', 'ibm_washington', 'russian_simulator'],
    edit_vector=edit_vector
)

Running v2.4.0 Scenarios Demo

# Run complete v2.4.0 scenarios demo
python quantum_integration/nsn_integration/demo_v2.4.0_scenarios.py

Demo Output

The demo will:

  1. Test real-time rank adaptation across different backend conditions
  2. Evaluate cross-lingual edit propagation with containment analysis
  3. Generate personalized rank recommendations for contributors
  4. Run ensemble inference across multiple backends
  5. Export telemetry edits and generate visualizations

Generated Files

  • telemetry_edits_v2.4.0.json: Telemetry-aware rank adaptations for leaderboard

Roadmap

  • Real-time rank adaptation based on backend telemetry βœ… v2.4.0
  • Multi-backend ensemble inference βœ… v2.4.0
  • Cross-lingual edit propagation βœ… v2.4.0
  • Contributor-aware feedback system βœ… v2.4.0
  • Automated hyperparameter tuning for rank selection
  • Extended language support (50+ languages)
  • Integration with Hugging Face Spaces for public leaderboard
  • Quantum circuit optimization for rank-specific operations
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support