distilbert-classn-LinearAlg-finetuned-span-width-4

This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9139
  • Accuracy: 0.7937
  • F1: 0.7904
  • Precision: 0.8022
  • Recall: 0.7937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
5.0288 0.6849 50 2.5823 0.0714 0.0442 0.0409 0.0714
5.0268 1.3699 100 2.5627 0.0238 0.0132 0.0094 0.0238
4.9407 2.0548 150 2.5352 0.0556 0.0482 0.0468 0.0556
4.9127 2.7397 200 2.5053 0.0714 0.0461 0.0403 0.0714
4.8177 3.4247 250 2.4931 0.0794 0.0443 0.0329 0.0794
4.7255 4.1096 300 2.4508 0.1111 0.1076 0.1194 0.1111
4.6022 4.7945 350 2.4190 0.1032 0.0814 0.0855 0.1032
4.5423 5.4795 400 2.3782 0.1429 0.1250 0.1246 0.1429
4.2497 6.1644 450 2.2977 0.1270 0.1066 0.1300 0.1270
4.1307 6.8493 500 2.0833 0.3016 0.2806 0.3279 0.3016
3.3278 7.5342 550 1.8698 0.3889 0.3504 0.3621 0.3889
2.9272 8.2192 600 1.6661 0.4921 0.4868 0.5582 0.4921
2.3628 8.9041 650 1.4250 0.5794 0.5722 0.5898 0.5794
1.8072 9.5890 700 1.2825 0.6190 0.6167 0.6262 0.6190
1.3522 10.2740 750 1.1679 0.6905 0.6925 0.7317 0.6905
1.0691 10.9589 800 1.0539 0.7460 0.7416 0.7598 0.7460
0.7661 11.6438 850 1.0198 0.7381 0.7390 0.7530 0.7381
0.5899 12.3288 900 0.9670 0.7540 0.7510 0.7725 0.7540
0.4413 13.0137 950 0.9887 0.7381 0.7364 0.7648 0.7381
0.3106 13.6986 1000 0.9224 0.7698 0.7645 0.7737 0.7698
0.2357 14.3836 1050 0.9266 0.7778 0.7700 0.7801 0.7778
0.211 15.0685 1100 0.9692 0.7460 0.7440 0.7610 0.7460
0.1573 15.7534 1150 0.9402 0.7540 0.7507 0.7589 0.7540
0.113 16.4384 1200 0.8856 0.8016 0.7982 0.8124 0.8016
0.0977 17.1233 1250 0.8920 0.8016 0.7952 0.8065 0.8016
0.0826 17.8082 1300 0.8878 0.7937 0.7912 0.8036 0.7937
0.0578 18.4932 1350 0.8937 0.8016 0.7973 0.8114 0.8016
0.0572 19.1781 1400 0.8905 0.7937 0.7905 0.7966 0.7937
0.0604 19.8630 1450 0.9128 0.7857 0.7819 0.7882 0.7857
0.0283 20.5479 1500 0.9102 0.8016 0.7979 0.8108 0.8016
0.0402 21.2329 1550 0.9044 0.8016 0.7985 0.8095 0.8016
0.0317 21.9178 1600 0.9108 0.8016 0.7982 0.8106 0.8016
0.0253 22.6027 1650 0.9134 0.8016 0.7998 0.8186 0.8016
0.0332 23.2877 1700 0.9136 0.7937 0.7913 0.7991 0.7937
0.0144 23.9726 1750 0.9141 0.7937 0.7904 0.8022 0.7937
0.0205 24.6575 1800 0.9139 0.7937 0.7904 0.8022 0.7937

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
4
Safetensors
Model size
65.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Heather-Driver/distilbert-classn-LinearAlg-finetuned-span-width-4

Finetuned
(28)
this model

Evaluation results