distilbert-classn-LinearAlg-finetuned-span-width-4
This model is a fine-tuned version of dslim/distilbert-NER on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9139
- Accuracy: 0.7937
- F1: 0.7904
- Precision: 0.8022
- Recall: 0.7937
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 25
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 5.0288 | 0.6849 | 50 | 2.5823 | 0.0714 | 0.0442 | 0.0409 | 0.0714 |
| 5.0268 | 1.3699 | 100 | 2.5627 | 0.0238 | 0.0132 | 0.0094 | 0.0238 |
| 4.9407 | 2.0548 | 150 | 2.5352 | 0.0556 | 0.0482 | 0.0468 | 0.0556 |
| 4.9127 | 2.7397 | 200 | 2.5053 | 0.0714 | 0.0461 | 0.0403 | 0.0714 |
| 4.8177 | 3.4247 | 250 | 2.4931 | 0.0794 | 0.0443 | 0.0329 | 0.0794 |
| 4.7255 | 4.1096 | 300 | 2.4508 | 0.1111 | 0.1076 | 0.1194 | 0.1111 |
| 4.6022 | 4.7945 | 350 | 2.4190 | 0.1032 | 0.0814 | 0.0855 | 0.1032 |
| 4.5423 | 5.4795 | 400 | 2.3782 | 0.1429 | 0.1250 | 0.1246 | 0.1429 |
| 4.2497 | 6.1644 | 450 | 2.2977 | 0.1270 | 0.1066 | 0.1300 | 0.1270 |
| 4.1307 | 6.8493 | 500 | 2.0833 | 0.3016 | 0.2806 | 0.3279 | 0.3016 |
| 3.3278 | 7.5342 | 550 | 1.8698 | 0.3889 | 0.3504 | 0.3621 | 0.3889 |
| 2.9272 | 8.2192 | 600 | 1.6661 | 0.4921 | 0.4868 | 0.5582 | 0.4921 |
| 2.3628 | 8.9041 | 650 | 1.4250 | 0.5794 | 0.5722 | 0.5898 | 0.5794 |
| 1.8072 | 9.5890 | 700 | 1.2825 | 0.6190 | 0.6167 | 0.6262 | 0.6190 |
| 1.3522 | 10.2740 | 750 | 1.1679 | 0.6905 | 0.6925 | 0.7317 | 0.6905 |
| 1.0691 | 10.9589 | 800 | 1.0539 | 0.7460 | 0.7416 | 0.7598 | 0.7460 |
| 0.7661 | 11.6438 | 850 | 1.0198 | 0.7381 | 0.7390 | 0.7530 | 0.7381 |
| 0.5899 | 12.3288 | 900 | 0.9670 | 0.7540 | 0.7510 | 0.7725 | 0.7540 |
| 0.4413 | 13.0137 | 950 | 0.9887 | 0.7381 | 0.7364 | 0.7648 | 0.7381 |
| 0.3106 | 13.6986 | 1000 | 0.9224 | 0.7698 | 0.7645 | 0.7737 | 0.7698 |
| 0.2357 | 14.3836 | 1050 | 0.9266 | 0.7778 | 0.7700 | 0.7801 | 0.7778 |
| 0.211 | 15.0685 | 1100 | 0.9692 | 0.7460 | 0.7440 | 0.7610 | 0.7460 |
| 0.1573 | 15.7534 | 1150 | 0.9402 | 0.7540 | 0.7507 | 0.7589 | 0.7540 |
| 0.113 | 16.4384 | 1200 | 0.8856 | 0.8016 | 0.7982 | 0.8124 | 0.8016 |
| 0.0977 | 17.1233 | 1250 | 0.8920 | 0.8016 | 0.7952 | 0.8065 | 0.8016 |
| 0.0826 | 17.8082 | 1300 | 0.8878 | 0.7937 | 0.7912 | 0.8036 | 0.7937 |
| 0.0578 | 18.4932 | 1350 | 0.8937 | 0.8016 | 0.7973 | 0.8114 | 0.8016 |
| 0.0572 | 19.1781 | 1400 | 0.8905 | 0.7937 | 0.7905 | 0.7966 | 0.7937 |
| 0.0604 | 19.8630 | 1450 | 0.9128 | 0.7857 | 0.7819 | 0.7882 | 0.7857 |
| 0.0283 | 20.5479 | 1500 | 0.9102 | 0.8016 | 0.7979 | 0.8108 | 0.8016 |
| 0.0402 | 21.2329 | 1550 | 0.9044 | 0.8016 | 0.7985 | 0.8095 | 0.8016 |
| 0.0317 | 21.9178 | 1600 | 0.9108 | 0.8016 | 0.7982 | 0.8106 | 0.8016 |
| 0.0253 | 22.6027 | 1650 | 0.9134 | 0.8016 | 0.7998 | 0.8186 | 0.8016 |
| 0.0332 | 23.2877 | 1700 | 0.9136 | 0.7937 | 0.7913 | 0.7991 | 0.7937 |
| 0.0144 | 23.9726 | 1750 | 0.9141 | 0.7937 | 0.7904 | 0.8022 | 0.7937 |
| 0.0205 | 24.6575 | 1800 | 0.9139 | 0.7937 | 0.7904 | 0.8022 | 0.7937 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Heather-Driver/distilbert-classn-LinearAlg-finetuned-span-width-4
Base model
distilbert/distilbert-base-cased
Quantized
dslim/distilbert-NER