| # Cloud Agents Configuration | |
| # Docking@HOME - AI Orchestration Settings | |
| # === Agent Settings === | |
| agent_name = "DockingOrchestrator" | |
| agent_version = "1.0.0" | |
| enable_ai_orchestration = true # Enable AI-powered task orchestration | |
| # === Model Configuration === | |
| model_provider = "huggingface" # huggingface, local | |
| model_name = "OpenPeerAI/Cloud-Agents" | |
| model_version = "latest" | |
| model_temperature = 0.7 # Creativity (0.0 = deterministic, 1.0 = creative) | |
| model_max_tokens = 2048 # Maximum tokens per response | |
| # === API Settings === | |
| # Uncomment and set your API key if using cloud providers | |
| # api_key = "YOUR_API_KEY_HERE" | |
| # api_endpoint = "https://api.localhost:8080/v1" # Custom endpoint if needed | |
| api_timeout_seconds = 60 | |
| api_retries = 3 | |
| # === Task Orchestration === | |
| optimization_strategy = "adaptive" # adaptive, greedy, balanced, ml | |
| enable_load_balancing = true # Enable intelligent load balancing | |
| enable_auto_scaling = true # Auto-scale worker allocation | |
| predict_task_duration = true # Use AI to predict task completion time | |
| learn_from_history = true # Learn from past executions | |
| # === Resource Optimization === | |
| optimize_cpu_allocation = true # Optimize CPU resource allocation | |
| optimize_gpu_allocation = true # Optimize GPU resource allocation | |
| optimize_memory_usage = true # Optimize memory allocation | |
| optimize_network_bandwidth = false # Optimize network usage | |
| # === Decision Making === | |
| decision_mode = "autonomous" # autonomous, assisted, manual | |
| confidence_threshold = 0.75 # Minimum confidence for autonomous decisions | |
| require_human_approval = false # Require approval for critical decisions | |
| approval_timeout_seconds = 300 # Timeout for human approval | |
| # === Task Prioritization === | |
| enable_smart_scheduling = true # AI-based task scheduling | |
| priority_factors = [ | |
| "deadline", | |
| "resource_availability", | |
| "task_complexity", | |
| "user_priority", | |
| "cost" | |
| ] | |
| rebalance_interval_seconds = 60 # Seconds between priority rebalancing | |
| # === Learning & Adaptation === | |
| enable_reinforcement_learning = true # Enable RL for optimization | |
| learning_rate = 0.001 # Learning rate for models | |
| exploration_rate = 0.1 # Exploration vs exploitation (epsilon) | |
| memory_size = 10000 # Experience replay memory size | |
| batch_size = 32 # Training batch size | |
| update_frequency = 100 # Model update frequency (steps) | |
| # === Performance Metrics === | |
| track_metrics = true # Track performance metrics | |
| metrics_to_track = [ | |
| "task_completion_time", | |
| "resource_utilization", | |
| "success_rate", | |
| "cost_per_task", | |
| "throughput" | |
| ] | |
| # === Prediction Models === | |
| enable_task_prediction = true # Predict task requirements | |
| enable_failure_prediction = true # Predict potential failures | |
| enable_bottleneck_detection = true # Detect performance bottlenecks | |
| prediction_confidence_threshold = 0.70 | |
| # === Cost Optimization === | |
| enable_cost_optimization = true # Optimize operational costs | |
| cost_per_cpu_hour = 0.05 # Cost per CPU hour (USD) | |
| cost_per_gpu_hour = 0.50 # Cost per GPU hour (USD) | |
| cost_per_gb_storage = 0.01 # Cost per GB storage per month (USD) | |
| budget_limit_daily = 100.0 # Daily budget limit (USD) | |
| # === Auto-scaling === | |
| min_workers = 1 # Minimum worker nodes | |
| max_workers = 100 # Maximum worker nodes | |
| scale_up_threshold = 0.80 # Resource usage to trigger scale up | |
| scale_down_threshold = 0.30 # Resource usage to trigger scale down | |
| scale_up_increment = 2 # Workers to add when scaling up | |
| scale_down_increment = 1 # Workers to remove when scaling down | |
| cooldown_period_seconds = 300 # Cooldown between scaling operations | |
| # === Anomaly Detection === | |
| enable_anomaly_detection = true # Detect anomalies in execution | |
| anomaly_threshold = 3.0 # Standard deviations for anomaly | |
| alert_on_anomaly = true # Send alerts on detected anomalies | |
| # === Collaboration === | |
| enable_multi_agent = false # Enable multi-agent coordination | |
| agent_communication_protocol = "rest" # rest, grpc, mqtt | |
| coordinator_url = "http://localhost:9000" | |
| # === Caching & State === | |
| cache_predictions = true # Cache AI predictions | |
| cache_duration_seconds = 3600 # Cache duration | |
| state_persistence = true # Persist agent state | |
| state_file = "agent_state.json" # State file path | |
| checkpoint_interval_minutes = 10 # Save checkpoint interval | |
| # === Monitoring & Observability === | |
| enable_telemetry = true # Enable telemetry | |
| telemetry_endpoint = "http://localhost:4318" # OpenTelemetry endpoint | |
| log_level = "INFO" # DEBUG, INFO, WARNING, ERROR | |
| log_predictions = true # Log AI predictions | |
| log_decisions = true # Log orchestration decisions | |
| # === Rate Limiting === | |
| max_requests_per_minute = 100 # Max API requests per minute | |
| max_concurrent_predictions = 10 # Max concurrent predictions | |
| # === Fallback Behavior === | |
| fallback_to_manual = true # Fallback to manual on AI failure | |
| fallback_strategy = "conservative" # conservative, aggressive, balanced | |
| retry_failed_predictions = true | |
| max_prediction_retries = 3 | |
| # === Feature Flags === | |
| features = { | |
| "smart_routing": true, | |
| "predictive_scaling": true, | |
| "cost_optimization": true, | |
| "anomaly_detection": true, | |
| "adaptive_learning": true, | |
| "multi_objective_optimization": true | |
| } | |
| # === Experimental Features === | |
| experimental_features = { | |
| "quantum_optimization": false, | |
| "federated_learning": false, | |
| "neural_architecture_search": false | |
| } | |
| # === Security === | |
| encrypt_model_data = false # Encrypt model data at rest | |
| secure_inference = false # Use secure inference (TEE) | |
| audit_decisions = true # Audit all AI decisions | |