Aircraft & Drone Detector - YOLO11n
YOLO11n model trained to detect aircraft, helicopters, and drones in images.
Model Details
- Architecture: YOLO11n (nano)
- Classes: 3 (aircraft, drone, helicopter)
- Input Size: 640x640
- Parameters: 2.59M
- Framework: Ultralytics
Performance Metrics
| Metric | Value |
|---|---|
| mAP50-95 | 0.703 |
| mAP50 | 0.966 |
| Precision | 0.924 |
| Recall | 0.941 |
Usage
Installation
pip install ultralytics huggingface_hub
Inference
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
# Download model
model_path = hf_hub_download(
repo_id=QuincySorrentino/AeroYOLO,
filename="best.pt"
)
# Load and run inference
model = YOLO(model_path)
results = model.predict('path/to/image.jpg', conf=0.25)
# Display results
results[0].show()
Batch Processing
# Process multiple images
results = model.predict('path/to/images/', save=True, conf=0.25)
# Results saved to runs/detect/predict/
Classes
0: aircraft1: drone2: helicopter
Training Details
- Dataset: 10,799 training images
- Validation: 603 images
- Epochs: 100
- Batch Size: Auto (58)
- Image Size: 640x640
- Augmentation: Auto-augment, mosaic, mixup
Citation
@software{yolo11_ultralytics,
author = {Glenn Jocher and Jing Qiu},
title = {Ultralytics YOLO11},
version = {11.0.0},
year = {2024},
url = {https://github.com/ultralytics/ultralytics}
}
- Downloads last month
- 47
