it-no-bio-20251014-t18

Slur reclamation binary classifier
Task: LGBTQ+ reclamation vs non-reclamation use of harmful words on social media text.

Trial timestamp (UTC): 2025-10-14 10:59:01

Data case: it

Configuration (trial hyperparameters)

Model: Alibaba-NLP/gte-multilingual-base

Hyperparameter Value
LANGUAGES it
LR 2e-05
EPOCHS 3
MAX_LENGTH 256
USE_BIO False
USE_LANG_TOKEN False
GATED_BIO False
FOCAL_LOSS True
FOCAL_GAMMA 2.5
USE_SAMPLER True
R_DROP True
R_KL_ALPHA 1.0
TEXT_NORMALIZE True

Dev set results (summary)

Metric Value
f1_macro_dev_0.5 0.8966749265256728
f1_weighted_dev_0.5 0.9343820254908982
accuracy_dev_0.5 0.9325153374233128
f1_macro_dev_best_global 0.9161091096242924
f1_weighted_dev_best_global 0.9495941068930785
accuracy_dev_best_global 0.950920245398773
f1_macro_dev_best_by_lang 0.9161091096242924
f1_weighted_dev_best_by_lang 0.9495941068930785
accuracy_dev_best_by_lang 0.950920245398773
default_threshold 0.5
best_threshold_global 0.65
thresholds_by_lang {"it": 0.65}

Thresholds

  • Default: 0.5
  • Best global: 0.65
  • Best by language: { "it": 0.65 }

Detailed evaluation

Classification report @ 0.5

              precision    recall  f1-score   support

 no-recl (0)     0.9764    0.9394    0.9575       132
    recl (1)     0.7778    0.9032    0.8358        31

    accuracy                         0.9325       163
   macro avg     0.8771    0.9213    0.8967       163
weighted avg     0.9386    0.9325    0.9344       163

Classification report @ best global threshold (t=0.65)

              precision    recall  f1-score   support

 no-recl (0)     0.9559    0.9848    0.9701       132
    recl (1)     0.9259    0.8065    0.8621        31

    accuracy                         0.9509       163
   macro avg     0.9409    0.8957    0.9161       163
weighted avg     0.9502    0.9509    0.9496       163

Classification report @ best per-language thresholds

              precision    recall  f1-score   support

 no-recl (0)     0.9559    0.9848    0.9701       132
    recl (1)     0.9259    0.8065    0.8621        31

    accuracy                         0.9509       163
   macro avg     0.9409    0.8957    0.9161       163
weighted avg     0.9502    0.9509    0.9496       163

Per-language metrics (at best-by-lang)

lang n acc f1_macro f1_weighted prec_macro rec_macro prec_weighted rec_weighted
it 163 0.9509 0.9161 0.9496 0.9409 0.8957 0.9502 0.9509

Data

  • Train/Dev: private multilingual splits with ~15% stratified Dev (by (lang,label)).
  • Source: merged EN/IT/ES data with bios retained (ignored if unused by model).

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
import torch, numpy as np

repo = "SimoneAstarita/it-no-bio-20251014-t18"
tok = AutoTokenizer.from_pretrained(repo)
cfg = AutoConfig.from_pretrained(repo)
model = AutoModelForSequenceClassification.from_pretrained(repo)

texts = ["example text ..."]
langs = ["en"]

mode = "best_global"  # or "0.5", "by_lang"

enc = tok(texts, truncation=True, padding=True, max_length=256, return_tensors="pt")
with torch.no_grad():
    logits = model(**enc).logits
probs = torch.softmax(logits, dim=-1)[:, 1].cpu().numpy()

if mode == "0.5":
    th = 0.5
    preds = (probs >= th).astype(int)
elif mode == "best_global":
    th = getattr(cfg, "best_threshold_global", 0.5)
    preds = (probs >= th).astype(int)
elif mode == "by_lang":
    th_by_lang = getattr(cfg, "thresholds_by_lang", {})
    preds = np.zeros_like(probs, dtype=int)
    for lg in np.unique(langs):
        t = th_by_lang.get(lg, getattr(cfg, "best_threshold_global", 0.5))
        preds[np.array(langs) == lg] = (probs[np.array(langs) == lg] >= t).astype(int)
print(list(zip(texts, preds, probs)))

Additional files

reports.json: all metrics (macro/weighted/accuracy) for @0.5, @best_global, and @best_by_lang. config.json: stores thresholds: default_threshold, best_threshold_global, thresholds_by_lang. postprocessing.json: duplicate threshold info for external tools.

Downloads last month
13
Safetensors
Model size
0.6B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support