TX-16G
Multi-modal AI model optimized for 16GB+ systems. Maximum quality variant.
基于通义千问 (Qwen) 的多模态AI模型,专为16GB+系统优化。最高质量版本。
Specifications
- Parameters: ~8B
- Size: 5.03 GB (Q4_K_M quantization)
- Min RAM: 16GB
- Capabilities: Text, vision, code
- Format: GGUF (llama.cpp/Ollama compatible)
- Quantization: Q4_K_M (balanced quality/size)
规格说明
- 参数量: ~80亿
- 大小: 5.03 GB (Q4_K_M 量化)
- 最小内存: 16GB
- 能力: 文本、视觉、代码
- 格式: GGUF (兼容 llama.cpp/Ollama)
- 量化: Q4_K_M (质量与大小平衡)
Performance
Highest quality inference for users with 16GB+ RAM. Optimized for deep reasoning, complex multi-step tasks, and advanced code generation. Provides superior quality output at the cost of slightly more memory usage.
为拥有16GB+内存的用户提供最高质量推理。针对深度推理、复杂多步骤任务和高级代码生成进行优化。以稍多的内存使用为代价提供卓越的质量输出。
Usage
Automatic (via TARX)
TARX automatically detects your system hardware and downloads the appropriate model variant. TX-16G is recommended for systems with 16GB+ RAM.
# TARX will auto-download and configure TX-16G on 16GB+ systems
tarx-local
Manual (Ollama)
# Download model
wget https://huggingface.co/Tarxxxxxx/TX-16G/resolve/main/tx-16g.gguf
# Create Modelfile
cat > Modelfile << 'MODELFILE'
FROM ./tx-16g.gguf
PARAMETER temperature 0.7
PARAMETER num_ctx 8192
PARAMETER stop "<|im_end|>"
PARAMETER stop "<|im_start|>"
MODELFILE
# Import to Ollama
ollama create tx-16g -f Modelfile
# Run
ollama run tx-16g
Manual (llama.cpp)
# Download model
wget https://huggingface.co/Tarxxxxxx/TX-16G/resolve/main/tx-16g.gguf
# Run with llama.cpp
./llama-cli -m tx-16g.gguf -p "Hello, how can I help you today?" --ctx-size 8192
Model Details
This model is based on Qwen2-VL-7B-Instruct, a state-of-the-art vision-language model developed by Alibaba Cloud's Qwen team. Qwen2-VL excels at understanding both images and text, enabling sophisticated multimodal reasoning, visual question answering, and code generation from visual inputs.
该模型基于阿里云通义千问团队开发的 Qwen2-VL-7B-Instruct,这是一个先进的视觉-语言模型。Qwen2-VL 在理解图像和文本方面表现出色,能够进行复杂的多模态推理、视觉问答和从视觉输入生成代码。
Key Features
- Advanced multimodal understanding (text + vision)
- Superior code generation and analysis
- Deep reasoning capabilities
- Long-context understanding (8K context)
- Complex software interaction
- Enhanced thinking and planning abilities
- High-resolution image understanding
- Multi-image reasoning
- Fine-grained visual perception
主要特性
- 高级多模态理解(文本+视觉)
- 卓越的代码生成与分析
- 深度推理能力
- 长上下文理解(8K上下文)
- 复杂软件交互
- 增强的思考和规划能力
- 高分辨率图像理解
- 多图像推理
- 细粒度视觉感知
Use Cases
- Complex code refactoring and architecture design
- Multi-step software automation
- Advanced visual analysis and computer vision tasks
- Deep reasoning and research tasks
- Technical documentation generation
- Design system analysis
- Medical/scientific image analysis
- Legal document review
使用场景
- 复杂的代码重构和架构设计
- 多步骤软件自动化
- 高级视觉分析和计算机视觉任务
- 深度推理和研究任务
- 技术文档生成
- 设计系统分析
- 医学/科学图像分析
- 法律文档审查
License
Apache 2.0
Attribution
This model is based on Qwen2-VL-7B-Instruct by the Qwen Team at Alibaba Cloud. We are grateful to the Qwen team (@Qwen) for their outstanding work on multimodal language models and for making their research openly available.
本模型基于阿里云通义千问团队的 Qwen2-VL-7B-Instruct。我们感谢通义千问团队 (@Qwen) 在多模态语言模型方面的杰出工作,以及他们将研究成果公开分享。
Original Model
- Name: Qwen2-VL-7B-Instruct
- Organization: Qwen Team, Alibaba Cloud
- HuggingFace: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct
- License: Apache 2.0
Modifications
- Quantized to Q4_K_M GGUF format for efficient deployment
- Optimized for 16GB+ RAM systems
- Integrated into TARX local-first AI platform
- Tuned for maximum quality and reasoning depth
改进说明
- 量化为 Q4_K_M GGUF 格式以实现高效部署
- 针对16GB+内存系统优化
- 集成到 TARX 本地优先AI平台
- 调优以实现最高质量和推理深度
Citation
@software{tx-16g,
title = {TX-16G: Multi-modal AI for 16GB+ Systems},
author = {TARX Team},
year = {2025},
url = {https://huggingface.co/Tarxxxxxx/TX-16G},
note = {Based on Qwen2-VL-7B-Instruct by Qwen Team}
}
@article{qwen2vl,
title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution},
author={Qwen Team},
journal={arXiv preprint},
year={2024},
url={https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct}
}
特别感谢阿里云通义千问团队为开源AI社区做出的贡献!
Special thanks to the Alibaba Cloud Qwen Team for their contributions to the open-source AI community!
- Downloads last month
- 99
We're not able to determine the quantization variants.