Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data
Paper
•
2502.14044
•
Published
•
8
Project Page: SelfSynthX.
Paper on arXiv: Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data
This model is a fine-tuned multimodal foundation model based on LLaVA-1.5-7B-hf, optimized for fine-grained classification of aircraft types using the FGVC-Aircraft dataset.
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
model_id = "YuchengShi/LLaVA-v1.5-7B-Fgvc"
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
).to("cuda")
processor = AutoProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What type of aircraft is this?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "fgvc-aircraft/test1.png"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to("cuda", torch.float16)
output = model.generate(**inputs, max_new_tokens=200, do_sample=False)
print(processor.decode(output[0][2:], skip_special_tokens=True))
If you use this model, please cite:
@inproceedings{
shi2025enhancing,
title={Enhancing Cognition and Explainability of Multimodal Foundation Models with Self-Synthesized Data},
author={Yucheng Shi and Quanzheng Li and Jin Sun and Xiang Li and Ninghao Liu},
booktitle={The Thirteenth International Conference on Learning Representations},
year={2025},
url={https://openreview.net/forum?id=lHbLpwbEyt}
}