phobert-v2_v2

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3130
  • Accuracy: 0.9507
  • Precision Macro: 0.8904
  • Recall Macro: 0.8541
  • F1 Macro: 0.8704
  • F1 Weighted: 0.9497

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Macro Recall Macro F1 Macro F1 Weighted
0.4636 1.0 90 0.2180 0.9419 0.9099 0.7652 0.8049 0.9359
0.1882 2.0 180 0.1916 0.9419 0.8351 0.8649 0.8485 0.9433
0.1453 3.0 270 0.1898 0.9488 0.8743 0.8402 0.8555 0.9476
0.1175 4.0 360 0.1932 0.9526 0.9141 0.8267 0.8597 0.9500
0.0856 5.0 450 0.2092 0.9514 0.8708 0.8711 0.8709 0.9514
0.0826 6.0 540 0.2221 0.9526 0.9063 0.8516 0.8748 0.9512
0.0675 7.0 630 0.2342 0.9438 0.8419 0.8696 0.8545 0.9450
0.0618 8.0 720 0.2402 0.9469 0.8890 0.8430 0.8630 0.9456
0.0426 9.0 810 0.2503 0.9507 0.8797 0.8543 0.8660 0.9499
0.038 10.0 900 0.2786 0.9514 0.8999 0.8467 0.8692 0.9499
0.039 11.0 990 0.2795 0.9463 0.8628 0.8554 0.8589 0.9460
0.0263 12.0 1080 0.2817 0.9488 0.8733 0.8571 0.8648 0.9483
0.0209 13.0 1170 0.2840 0.9495 0.8802 0.8576 0.8681 0.9488
0.0221 14.0 1260 0.2769 0.9526 0.8904 0.8639 0.8761 0.9519
0.0172 15.0 1350 0.2861 0.9514 0.8985 0.8546 0.8739 0.9502
0.0159 16.0 1440 0.3031 0.9482 0.8850 0.8523 0.8671 0.9472
0.0124 17.0 1530 0.3119 0.9501 0.8792 0.8538 0.8655 0.9493
0.0107 18.0 1620 0.3173 0.9476 0.8948 0.8476 0.8681 0.9463
0.0106 19.0 1710 0.3094 0.9545 0.8979 0.8611 0.8776 0.9535
0.0108 20.0 1800 0.3130 0.9507 0.8904 0.8541 0.8704 0.9497

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
9
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for aiface/phobert-v2_v2

Finetuned
(291)
this model

Evaluation results