FP8 Model with Precision Recovery
- Source:
https://huggingface.co/spacepxl/Wan2.1-VAE-upscale2x - File:
Wan2.1_VAE_upscale2x_imageonly_real_v1.safetensors - FP8 Format:
E5M2 - Architecture: vae
- Precision Recovery Type: Correction Factors
- Precision Recovery File:
Wan2.1_VAE_upscale2x_imageonly_real_v1-correction-vae.safetensors - FP8 File:
Wan2.1_VAE_upscale2x_imageonly_real_v1-fp8-e5m2.safetensors
Usage (Inference)
from safetensors.torch import load_file
import torch
# Load FP8 model
fp8_state = load_file("Wan2.1_VAE_upscale2x_imageonly_real_v1-fp8-e5m2.safetensors")
# Load precision recovery file
recovery_state = load_file("Wan2.1_VAE_upscale2x_imageonly_real_v1-correction-vae.safetensors") if "Wan2.1_VAE_upscale2x_imageonly_real_v1-correction-vae.safetensors" else {}
# Reconstruct high-precision weights
reconstructed = {}
for key in fp8_state:
fp8_weight = fp8_state[key].to(torch.float32)
if recovery_state:
# For LoRA approach
if "lora_A" in recovery_state:
if f"lora_A.{key}" in recovery_state and f"lora_B.{key}" in recovery_state:
A = recovery_state[f"lora_A.{key}"].to(torch.float32)
B = recovery_state[f"lora_B.{key}"].to(torch.float32)
lora_weight = B @ A
reconstructed[key] = fp8_weight + lora_weight
else:
reconstructed[key] = fp8_weight
# For correction factor approach
elif f"correction.{key}" in recovery_state:
correction = recovery_state[f"correction.{key}"].to(torch.float32)
reconstructed[key] = fp8_weight + correction
else:
reconstructed[key] = fp8_weight
else:
reconstructed[key] = fp8_weight
Requires PyTorch โฅ 2.1 for FP8 support.
- Downloads last month
- 70
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support