MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices
Paper
•
2004.02984
•
Published
•
1
MobileBERT is a thin version of BERT_LARGE, while equipped with bottleneck structures and a carefully designed balance between self-attentions and feed-forward networks.
This model was fine-tuned from the HuggingFace checkpoint google/mobilebert-uncased on SQuAD2.0.
| Dataset | Split | # samples |
|---|---|---|
| SQuAD2.0 | train | 130k |
| SQuAD2.0 | eval | 12.3k |
Python: 3.7.5
Machine specs:
CPU: Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz
Memory: 32 GiB
GPUs: 2 GeForce GTX 1070, each with 8GiB memory
GPU driver: 418.87.01, CUDA: 10.1
script:
# after install https://github.com/huggingface/transformers
cd examples/question-answering
mkdir -p data
wget -O data/train-v2.0.json https://rajpurkar.github.io/SQuAD-explorer/dataset/train-v2.0.json
wget -O data/dev-v2.0.json https://rajpurkar.github.io/SQuAD-explorer/dataset/dev-v2.0.json
export SQUAD_DIR=`pwd`/data
python run_squad.py \
--model_type mobilebert \
--model_name_or_path google/mobilebert-uncased \
--do_train \
--do_eval \
--do_lower_case \
--version_2_with_negative \
--train_file $SQUAD_DIR/train-v2.0.json \
--predict_file $SQUAD_DIR/dev-v2.0.json \
--per_gpu_train_batch_size 16 \
--per_gpu_eval_batch_size 16 \
--learning_rate 4e-5 \
--num_train_epochs 5.0 \
--max_seq_length 320 \
--doc_stride 128 \
--warmup_steps 1400 \
--save_steps 2000 \
--output_dir $SQUAD_DIR/mobilebert-uncased-warmup-squad_v2 2>&1 | tee train-mobilebert-warmup-squad_v2.log
It took about 3.5 hours to finish.
Model size: 95M
| Metric | # Value | # Original (Table 5) |
|---|---|---|
| EM | 75.2 | 76.2 |
| F1 | 78.8 | 79.2 |
Note that the above results didn't involve any hyperparameter search.
from transformers import pipeline
qa_pipeline = pipeline(
"question-answering",
model="csarron/mobilebert-uncased-squad-v2",
tokenizer="csarron/mobilebert-uncased-squad-v2"
)
predictions = qa_pipeline({
'context': "The game was played on February 7, 2016 at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California.",
'question': "What day was the game played on?"
})
print(predictions)
# output:
# {'score': 0.71434086561203, 'start': 23, 'end': 39, 'answer': 'February 7, 2016'}
Created by Qingqing Cao | GitHub | Twitter
Made with ❤️ in New York.