File size: 2,344 Bytes
dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c dc0f09e 9686a7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
language: en
license: mit
tags:
- sign-language
- mediapipe
- vietnamese
- keypoints
- npz
size_categories:
- 50GB+
task_categories:
- other
custom_task: sign-language-recognition
pretty_name: VOYA Vietnamese Sign Language (VOYA_VSL)
---
# VOYA Vietnamese Sign Language (VOYA_VSL)
VOYA_VSL is a Vietnamese Sign Language dataset collected and preprocessed for research in **sign language recognition**.
The dataset consists of sequences of keypoints extracted using MediaPipe, where each sequence represents a sign language video.
## π¦ Dataset Information
- **Format**: `.npz` (NumPy compressed)
- **Number of samples**: ~161
- **Sample structure**:
- `sequences`: a matrix with shape `(60, 1605)` (60 frames, 1605 keypoints/features per frame)
- `labels`: class index (int32)
## π Dataset Structure
```
VOYA_VSL/
βββ Merged/
β βββ class_0001.npz
β βββ class_0002.npz
β βββ ...
β βββ class_0161.npz
βββ labels.json
βββ dataset.py
βββ README.md
```
- `Merged/` : contains per-class data stored as `.npz` files
- `labels.json` : maps `class_xxxx` β sign name
- `dataset.py` : script to load dataset with Hugging Face Datasets
- `README.md` : dataset description
## π οΈ Usage
```python
from datasets import load_dataset
# Load the VOYA_VSL dataset
dataset = load_dataset("Kateht/VOYA_VSL")
print(dataset)
# Example output
DatasetDict({
train: Dataset({
features: ['sequences', 'labels'],
num_rows: ...
})
})
# Access a sample
sample = dataset["train"][0]
print(sample["sequences"].shape) # (60, 1605)
print(sample["labels"]) # int label
# Split train/validation/test after loading
dataset = dataset["train"].train_test_split(test_size=0.2, seed=42)
```
## π Labels
The labels.json file maps class IDs to Vietnamese labels. Example:
```
{
"class_0001": "Δα»a chα» (bαΊ―c)",
"class_0002": "Δα»a chα» (nam)",
"class_0003": "Δα»a chα» (trung)"
}
```
## π Citation
If you use this dataset in your research, please cite:
```
@misc{voya_vsl_2025,
author = {Kateht et al.},
title = {VOYA Vietnamese Sign Language Dataset},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/Kateht/VOYA_VSL}}
}
``` |