problem
stringlengths
18
2.25k
gt
stringlengths
1
173
Find the [area](https://artofproblemsolving.com/wiki/index.php/Area) of the region enclosed by the [graph](https://artofproblemsolving.com/wiki/index.php/Graph) of $|x-60|+|y|=\left|\frac{x}{4}\right|.$
480
A4. The domain of the function $f(x)=\frac{3}{2-\cos x}$ is (A) $[-1,1]$ (B) $\mathbb{R}^{+}$ (C) $\mathbb{R}-\{x ; x=2 k \pi, k \in \mathbb{Z}\}$ (D) $\mathbb{R}$ (E) None of the above.
D
6. If in the real number range there is $$ x^{3}+p x+q=(x-a)(x-b)(x-c), $$ and $q \neq 0$, then $\frac{a^{3}+b^{3}+c^{3}}{a b c}=$ $\qquad$
3
Let $ P(x) \in \mathbb{Z}[x]$ be a polynomial of degree $ \text{deg} P \equal{} n > 1$. Determine the largest number of consecutive integers to be found in $ P(\mathbb{Z})$. [i]B. Berceanu[/i]
n
65. Can a quadrilateral have three acute angles?
Yes
3. Real numbers $a, b, c$ are pairwise distinct, and the coordinates of the three points are respectively: $A(a+b, c), B(b+c, a), C(c+a, b)$. Then the positional relationship of these three points is ( ). (A) form an obtuse triangle (B) form a right triangle (C) form an equilateral triangle (D) are collinear
D